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RETRACT RATIONAL FIELDS AND 
CYCLIC GALOIS EXTENSIONS 

BY 

DAVID J. SALTMAN ~ 

ABSTRACT 

In [23], this author began a study of so-called lifting and approximation 
problems for Galois extensions. One primary point was the connection between 
these problems and Noether's problem. In [24], a similar sort of study was 
begun for central simple algebras, with a connection to the center of generic 
matrices. In [25], the notion of retract rational field extension was defined, and a 
connection with lifting questions was claimed, which was used to complete the 
results in [23] and [24] about Noether's problem and generic matrices. In this 
paper we, first of all, set up a language which can be used to discuss lifting 
problems for very general "linear structures". Retract rational extensions are 
defined, and proofs of their basic properties are supplied, including their 
connection with lifting. We also determine when the function fields of algebraic 
tori are retract rational, and use this to further study Noetber's problem and 
cyclic 2-power Galois extensions. Finally, we use the connection with lifting to 
show that if p is a prime, then the center of the p degree generic division algebra 
is retract rational over the ground field. 

Introduction 

In [23], a ser ies  of  resul ts  were  p r o v e d  consis t ing  of s t a t emen t s  that  cer ta in  

Ga lo i s  ex tens ions  could  be  l i f ted ove r  local  r ings,  or  could  be  pu l l ed  back  f rom 

c o m p l e t e  fields to dense  subfields  (the so-ca l led  a p p r o x i m a t i o n  p rob lem) .  This  

p a p e r  is a sequel  to [23], in tha t  he re  we raise  and some t imes  answer  ques t ions  

tha t  a rose  out  of [23]. 

O n e  c o n s e q u e n c e  of the  m e t h o d s  of [23] was that  a large " c h u n k "  of the  

G r u n w a l d - W a n g  t h e o r e m  of a lgebra ic  n u m b e r  t heo ry  was, in fact ,  a special  case 

of a resul t  that  appl ies  to all fields (see also [17] and [26]; no te  tha t  [17] p r e d a t e s  

[23]). The  r e sea rch  that  led  up to this p a p e r  b e g a n  by  tak ing  a c loser  look  at  the  

G r u n w a l d - W a n g  T h e o r e m  and asking  if " m o r e "  of it could  be gene ra l i zed  to all 

fields. F o r  e x a m p l e ,  let  us cons ide r  W a n g ' s  c o u n t e r e x a m p l e ,  The  un rami f i ed  
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cyclic extension L/Q2 of degree 8 does not pull back to a cyclic extension of Q. 

But notice the following: L = Q2(p) where p is a primitive 17th root of one. And 

Q(p)/Q is cyclic of degree 16. What this means is that L @ L can be pulled back 

to a cyclic extension of Q of degree 16. 

It turns out that this phenomenon is more general. It happens for all local and 

global fields and all 2 power cyclic groups (we reprove this). What's more, we can 

generalize the corresponding lifting result to purely transcendental extensions of 

local or global fields. But we also show that this phenomenon is not completely 

general; we construct a counterexample. 

Several pieces of mathematical machinary are used to show the above results. 

One of them is an equivalence, for lifting and approximation questions, between 

2 power cyclic Galois extensions and abelian crossed products. This equivalence 

is used to give a relatively elementary proof of a full version of the 

Grunwald-Wang theorem. In particular, Wang's counterexample is given 

another proof. 

Going back to [23], we note that a relationship was traced between Noether 's  

Problem and lifting problems. This relationship was one way. In order to give a 

converse, the notion of retract rational field extensions was introduced in [25]. 

Briefly, K/F is retract rational if K is the quotient field of S and S is a retraction 

of a localized polynomial ring F[xt,...,x,](1/r). The idea is that a retract 

rational extension is almost rational (i.e., purely transcendental). In [25], some 

properties of these extensions were sketched. A major goal of this paper is to 

give a fuller treatment of these extensions. 

The point about retract rational field extensions is that they are naturally 

associated with lifting questions. In [25] this was claimed for Galois extensions 

and for central simple algebras. But it is true more generally, and one proof can 

show it all. In order to do this, we must use the appropriate general notion, that 

of linear structures. With this, and some other definitions, we can present our 

results in very general terms (and prove things once, instead of three times). 

Much previous work on Noether 's  problem has used the function fields of 

algebraic tori. This culminates in the treatment of [6], where questions about the 

stable isomorphisms of these function fields are reduced to questions about 

integral representations of finite groups. In this paper, we ask parallel questions 

about these function fields and retract rationality. We can say precisely when 

these function fields are retract rational. In addition, we define a functor on the 

integral representations which is shown to be related to relative lifting problems. 

It is this machinery that allows us to present the counterexample in the lifting of 

2 power cyclic Galois extensions mentioned above. 
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Throughout  this paper, we will attempt to illustrate that the notion of retract 

rationality is a natural one. For example, we will prove the following result. Let 

A be a finite abelian group of exponent 2'm for m odd. If F is a field of 

characteristic ~ 2, L is the field F(x~ I g ~ A), and 0 is a primitive 2' root of 

one, then LA/F is retract rational if and only if F(p)/F is a cyclic extension. 

Compare this with the corresponding characterization of when L A/F is rational 

([16]). We can also extend our results to include all quotient fields of symmetric 

algebras of F[A] modules which are faithful as A modules. 

We spend a bit of time in this paper looking at the question of lifting crossed 

product algebras. As an outgrowth of that and our general theory, we prove the 

following: Let Z(F, n, r) be the center of the generic division algebra UD(F, n, r) 

(e.g., [14], p. 92). If n = p  is a prime, then Z(F,p,r)/F is retract rational. 

Compare this with [10], [11], and [20], where rationality is proved for n = 2, 3, 4. 

In the previous papers [23], [24], and [25], both lifting problems and 

approximation problems are treated. Except for parts of w we will place the 

main emphasis on lifting problems. We believe the lifting questions to be more 

fundamental. The reader should note that these two sorts of questions are 

closely linked. In fact, using the argument of 4.20, a sort of equivalence could be 

proved between them. To do so, however, would require even more new 

terminology and does not seem, now, worth the effort. 

In w we introduce the general terminology of linear structures, and the 

associated other definitions, w has the results about integral representations 

which we require, w is about retract rational fields and w is about cyclic Galois 

extensions. Also in w is the result about L A mentioned above. Finally, w has 

the results about crossed products including the result about Z(F,p, r). 
Let us specify some terminology and notation. In this whole paper, F will be 

an infinite field, the "base"  field. All rings will be F algebras. The term F map 

will denote an F algebra homomorphism. If G is a group, the symbol F[G] will 

mean the group algebra, whereas if V is an F vector space, F+[ V] will mean the 

symmetric algebra. A local F algebra will always be presented as T, M where 

M C T is the maximal ideal. By assumption, local F algebras will be commuta- 

tive. If V is an F vector space, [ V : F] is the dimension of V over F. We will fix 

an algebraic closure, F, of F, and will denote by p(n) a primitive n th  root of one 

in F, if meaningful. For any field K, K(a) will denote the field generated by K 

and a. The term "valuation on K "  will refer to a real valued valuation. If K is a 

global field, we will (imprecisely) use the term valuation and prime interchange- 

ably. 

By a Galois extension we will mean a Galois extension of commutative rings 
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as in [7]. In particular, if K is a field and L/K is Galois, then L need not be a 

field (but L is a direct sum of fields). A Galois extension with group G will be 

abbreviated as a G-Galois extension. Note that such an extension is a ring 

extension S/R and a specified action of G on S. All isomorphisms of G-Galois 

extensions are assumed to preserve the G action. 

We will make considerable use of the Brauer group, Br(R),  of the commuta- 

tive ring R, especially in the case R is a field. Of course, Br(R)  consists of 

equivalence classes of Azumaya algebras. If A/R is Azumaya (this means R is 

the center of A),  we will denote by [A ] the Brauer equivalence class of A. If 

S ~_ R, Br(S/R) will denote the subgroup of Br(R) of all classes split by S. If 

A/R is Azumaya and A has constant rank as an R module, then this rank is a 

square. The square root of this rank is called the degree of A. Though we assume 

the reader is familiar with the Brauer group, we recall one important fact. If 

AlL, B/L are Azumaya, L is a field, [A] = [B], and A, B have equal degrees, 

then A ~ B as L algebras. Finally, if A is Azumaya, the exponent of A will be 

the order of [A] in the Brauer group. We refer the reader to [l], [7], and [18] for 

the basic information about the Brauer group we will require. 

Suppose SIR is G-Galois and S* is the unit group of S. If c(~r, 7) ~ S* is a G 

2-cocycle, we can form the crossed product A(S/R, G, c), which is Azumaya over 

R (e.g., [7], p. 121). If G is cyclic, the cocycle c is determined (up to coboundary) 

by a choice of generator o- E G and an element d @ R*. The corresponding 

cyclic algebra will be denoted by A(S/R,~r, d). 
All modules in this paper will be left modules. If R, S are commutative rings, 

if ~0:R--~ S is a ring homomorphism, and if M is an R module, then MQ~S 
will denote the tensor product where S is an R module via ~. If [ : N ~  M, 

g : N ~  M'  are module homomorphisms (over some ring) we will denote the 

pushout by M ONM'. In the dual situation, M • will denote the pullback. 

In general, all maps which have, for one reason or another,  unique extensions 

will have the same symbol used to designate the extension. And truly finally, if S 

is a domain, we will use q(S) to denote the field of fractions of S. 

w General nonsense 

A major theme of this paper is the study of whether certain algebraic 

structures can be lifted over local rings. The purpose of this section is to develop 

a language with which we can discuss all of our lifting problems simultaneously. 

Of course, one can do this in many ways. Our choice here is a bit arbitrary, but it 

serves our purposes. 
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In the general  definitions that will follow, it will be useful to keep in mind two 

examples  of algebraic structures which we ult imately will deal with. They  are 

A z u m a y a  algebras and G-Galo i s  extensions, for G a finite group (fixed). These  

examples  have two impor tant  characteristics. First, they are both  defined with 

respect to a base ring, either the center  of the algebras or  the fixed ring of the 

Galois group.  Second,  for both structures it makes sense to talk about  base 

change via the tensor product .  These two characteristics mot ivate  our  general  

definitions. 

Let  R be a commuta t ive  ring and M an R module .  We set M ~~ = R and we 

set M ~r~ to be the r-fold tensor product  of M over  R. We define a linear structure 

to be a tuple of the form 

= ( R , M , f , , .  " .,f,) 

where R, M are as above and ~ : Mr M C'~ are R module  maps. We will say 

such an M is over  R and will occasionally write M/R.  The type of M is the 

sequence (s~, t,),. �9 (s,, t~). It is clear that  R algebras can be thought  of as linear 

structures over R. If G is a finite group,  then G-Galo i s  extensions S / R  can be 

thought  of as linear structures over R if we include a m o n g  the f ' s  the maps 

: S ~ S for each o- C G. Finally, R modules  with multil inear forms are also 

linear structures over R. In the rest of this paper,  algebraic structures will be 

described as linear structures without  explicitly stating how the identification is 

made.  

The  definition of a h o m o m o r p h i s m  of linear structures is the obvious  one. 

That  is, if 

M = ( R , M , f , , . . . , f ~ )  and ?r  

have the same type, we can define a h o m o m o r p h i s m  x F : M  ~ ?r to be a pair 

(q~, q,) where r : R ~ S is a ring homomorph i sm,  $ : M - ~  N is a r  

and (q~, $ )  preserves the f~ and g~ as follows: Define $~0~ to be q~, and t0 ('~ to be the 

induced map M~r~---~N ~r~. If ~ :M~~- -~M C'~ (and so g~ :N~'~--~N~')), then we 

require that  g~ o q,~'~ = O('~of,. In this way the class of all linear structures of a 

fixed type form a catagory in the usual way. A n  isomorphism 

(q~, tp) : M / R  ~ 2r will be an invertible morphism which is R linear. That  is, 

we insist that  S = R, that q~ is the identity, and that 0-1 :g ' - - -~M exists. 

In the opposi te  direction, if ~ = ( R , M , f ~ , . . . , f , )  is a linear structure and 

~o : R ~ S is a ring h o m o m o r p h i s m  (and S is commutat ive) ,  we can define 

M @ ~ S  = ( S , M @ , S , [ , @ I , . . . , [ ~ @ I ) ,  
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where (M ~) ,  S)t") is identified with M t") ~) ,  S and so f~ ~) 1: 

(M @ S)t')---~ (M Q S) u~ is well defined. Of course, .a  Q ,  S is a linear structure 

of the same type as ~ and the induced map ~t ~ ~ Q ,  S is a homomorphism. 

In studying lifting problems, we will consider classes of structures over a fixed 

field as follows. Let F be a field. An F structure is a linear structure ~ / R  such 

that F C R. The class of all F structures of a fixed type form a category where we 

insist that all homomorphisms be F linear. An F-class cr is a class of F structures 

closed under (F  linear) isomorphisms such that it has two additional properties. 

First, if ~ / R  E c~, and ~r is an F map with S commutative, then 

Q , S  E qr Secondly, if ~t/R E cr and R'C_R is a subring, then there is a 

~ " / R " E  cr such that R ' C  R"C_ R ;  R" is finitely generated as a ring over R' ,  

and ~ '  ~)~,, R ~ .a. We are interested in several examples of F classes. If n is a 

positive integer, we denote by M (F, n) the F class of all Azumaya algebras A / R  
where A is of degree n. Let G be a finite group. We denote by ~ ( G )  the F class 

of all G-Galois  extensions S/R where F C_ R. That both of these examples are F 

classes can be shown using [18], p. 35, [7], p. 85, and [22], p. 528. Later on in this 

paper we will describe other examples. 

In [23] and [24], this author considered questions of the following sort. If C/K 
was a Galois extension, or an Azumaya algebra, and T was a local ring with 

residue field K, did C lift to a similar structure over T? In some cases, an 

affirmative answer to this question was obtained via the construction of a generic 

Galois extension or a pure generic algebra. Both this question, and this approach 

to an answer, are completely general and can be phrased in terms of F classes, 

which we now do. We say an F class cr has the lifting property if whenever T, M 

is a local F algebra and ~ E qg is over T/M, then there is a ~t' /T E ~ such that 

~ t ' Q r T / M  ~ JR, the isomorphism being T/M linear, by def in i t ion . .a /R @ cs is 

a representing object for qr if R is an affine F algebra and if whenever X / K  E qr 
with K a field, then there is an F map q~ : R ---, K such that N ~ .a  ~),  K. In this 

circumstance we say that W/K is a specialization of ~ / R  and that ~r realizes 

N/K. Finally, a generic object ~t/R E c~ is a representing object such that R has 

the form F[Xl,. �9 x. ] ( l / r ) ;  that is, such that R is a localized polynomial ring. 

In both the case of Galois extensions and of Azumaya algebras, there is a 

natural representing object. For Galois extensions, we (roughly speaking) refer 

to Noether 's  construction ([23], p. 274 for example). For Azumaya algebras, we 

refer to the generic division algebra UD(F, n, r). Considering, for example, this 

later case, the situation is the following. We set R (F, n, r) C_ UD(F, n, r) to be the 

ring of generic n • n matrices. If C(F, n, r) is the center of R (F, n, r), then there 

is a O# s E C(F,n,r) such that R(F,n,r) ( l / s ) /C(F,n,r) ( l / s )  is Azumaya of 
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degree n. If A / K  is any central simple algebra of degree n, and 0 ~  t E 

C(F, n, r), then there is a ~ : C(F, n, r)(1/st)---> K such that 

R(F, n, r ) (1 / s t )@.K ~- A. 

In other words, R(F,  n, r)(1/s)/C(F, n, r)( l /s)  is not only a representing object, 

but is a densely representing object in the following sense. A representing object 

M / R  E q~ is called densely representing if R is a domain and if for any 

0 ~  s E R, then M @RR(1/S)  is a representing object. 

In [23] for Galois extensions, and in [24] for Azumaya algebras, a relationship 

was traced between generic objects and the lifting property. This relationship is 

quite general, and is stated in the next result. We will omit the proof because it is 

a trivial generalization of the argument of [23], p. 275. 

PROPOSITION 1.1. Let qg be an F-class, 

(a) if q~ has a generic object, then ~ has the lifting property; 
(b) if ~ has a densely representing object, and ~ has the lifting property, then c~ 

has a generic object. 

Note that, arguing as in [23], p. 256, the existence of a generic object implies 

the more general lifting property over semilocal F algebras. Thus if qg has a 

densely representing object, the lifting property for c~ implies the lifting 

property for ~ over semilocal F algebras. 

Let us return to the F class, sg(F, n), of Azumaya algebras and the ring 

R(F,n ,r ) .  This ring is sort of a free object for M(F,n) ,  but is not, itself, in 

M(F, n). The situation occurs again, so we introduce some terminology to cover 

it. Let ~ be an F class, M, 2( ~ ~. A surjection (q~, $)  : M ~ X is a morphism 

such that qJ, ~ are surjections as set maps. Given this, it is clear how to define a 

projective. If ~ is an F structure of the same type as those in ~, then ~ is a 

projective object for c~ if whenever A : ~ ~ 2r and W : d / ~  2r are morphisms, 

where W is a surjection and M, ? ( E  ~, then there is a A ' : ~  ~ M such that 

A = WoA'. We emphasize that, as with R(F,  n, r), we do not ask that ~ be in cs 

We say that ~ is a projective object in qg if ~ @ ~. 

We cite a few examples of projective objects, beginning with the easy fact that 

R(F,  n, r)/C(F, n, r) is a projective object for M(F, n). As another example, let 

% be the F class of all commutative F algebras R (each R is over itself). Then 

R = F[xl , .  �9 x,] is a projective object in qG. We will give a third example in the 

next lemma. 

LEMMA 1.2. Let G be a finite group and V an F[G] module such that 
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G ~ EndF (V)  is injective. Then if F§ V] is the symmetric algebra, we have that 

F§ V]/F+[ V] c is a projective object for ~ ( G ), the F class of G-Galois extensions. 

PROOF. Suppose S / R  and S ' /R '  are G-Galois extensions of commutative F 

algebras and 4':S---> S' is a G preserving F map surjection such that the 

restriction of ~0 to R is onto R' .  Let ~ : F+[V]---~ S' be any G preserving F map. 

By [5], p. 13, (S') + is a projective R'[G] module, and so a projective F[G] 

module. Hence there is a F[G] module map 6 :S'--->S such that t~o6 is the 

identity on S'. Restricting 6 o q~ to V gives an F[G] module map/_t : V---~ S. This 

map ~ induces a G preserving F algebra map/x":  F+[ V] ~ S. Now q~ = ~O o/z" 

because this relation holds on V. Q.E.D. 

REMARK. I thank F. DeMeyer  for this argument. 

Though R(F,  n, r) is not Azumaya, we know that R(F, n, r)(1/s) is Azumaya 

for some 0 ~ s E C(F, n, r). This new algebra is no longer projective, but it is 

almost projective in the following sense. Define a morphism (q~, ~) : ~ / R  --* 4r 

to be local if q~ ~(S*) = R *. That is, if the preimage of every unit in S is a unit in 

R. If ~ is a category of F structures, then ~ E cr is a local projective if for all 

local surjections �9 : ~ ~ 2r and all A : ~ ~ ,N', there is a A' : ~ --9 J /  such that 

A = ~ o A'. The use of the term local is, perhaps, justified by the following result. 

THEOREM 1.3. (a) Let cr be an F class, and ~ / R  ~ cr a local projective. If 

O~ s E R, then ~ ~ R R ( 1 / s ) / R ( 1 / s )  E ~ is a local projective. 

(b) S = F[x~,. . ., x,](1/s ) is a local projective for the class of all commutative F 

algebras. 

(c) Let G be a finite group, and V a F[G] module as in 1.2. Suppose 

S = F+[ V] (1/s ) where 0 ~ s E S is G fixed, and R = S ~. I f  S / R is G- Galois, then 

S / R  is a local projective for ~(G) ,  the F class of G-Galois extensions. 

(d) Let n be a positive integer and set A ' = R (F, n, r). I f  s @ A ' is in the center, 

and A' (1/s)  = A is Azumaya  over its center C, then A / C  is a local projective for 

~ ( n ) ,  the F class of Azumaya  algebras of degree n. 

PROOF. (a) Let ~t /R  and Jr be any objects, and let 0 P s  E R. Then 

H o m ( ~ t Q R R ( 1 / s ) , W / S )  can be identified with the subset of all (~,~0)~ 

Hom(J / /R ,  W/S)  such that q~(s)E S is a unit. With this observation (a) is easy. 

Using (a), parts (b), (c) and (d) are trivial. Q.E.D. 

We end this section with just a little bit more terminology. Suppose ~ and ~ '  

are both F classes of the same type and ~ C_ ~ ' .  We say that (c~, ~,) have the 

lifting property if for every local F algebra T, M and every ~t E cr over T / M  

there is a J I ' / T E  ~'  such that ~ ' Q T T / M ~ .  
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w M o d u l e s  o v e r  a g r o u p  

In later sections, we will be studying the function fields of algebraic tori, 

written Q (L/K, M). They will be defined in w but note now that L / K  here is a 

G-Galois extension, K is a field, and M is a Z[G] module which is finitely 

generated free as an abelian group. In [27], [16], [8], [29] and [6], it was shown 

that Q(L/K,  M)  can be studied via the G module properties of M. In this paper 

we will ask new questions about the Q ( L / K , M ) ,  and answer them by using 

some results on G modules. This section will deal exclusively with the necessary 

G module material. 

In what follows, we will assume the reader is familiar with the basic reference 

[6], especially Section One. We will briefly review the definitions and some 

results. From now on all Z[G] modules (also called G modules) will be assumed 

to be finitely generated free as abelian groups, unless stated otherwise. A 

permutation module is a Z[G] module P such that P has a basis which is 

permuted by G. If H C G is any subgroup, we can form the G module Z[G/H]  

which has as a basis the cosets o-H and upon which G acts in the obvious way. 

Any permutation module is a direct sum of the Z[G/H] 's  for different H's .  In 

what follows, the cohomology groups H"  (G, M) will always be Tate cohomol- 

ogy groups and so will be defined for all integers n. 

An invertible module is a direct summand of a permutation module. A flasque 

module is a G module M such that H-I(H, M) = 0 for all subgroups H C G. If E 

is a flasque module, and O---~I~M---~E---~O is an exact sequence where I is 

invertible, then this exact sequence splits. It is shown in [6] that every G module 

M can be fitted into an exact sequence O---~M--*P--~E--~O where P is a 

permutation module and E is a flasque module. Such a sequence is called a 

flasque resolution of M. For easy reference, we will state formally a result from 

[6], p. 181. 

LEMMA 2.1. Let O---~ M--~ P---~ E--~O be a flasque resolution and f : M--~ Q 

a G-map where Q is a permutation module. Then fextends to a G mapf '  : P --~ Q. 

In [6], two modules M, M'  were defined to be similar if M O P ~ M'  O P '  for 

P, P '  permutation modules. For our purposes, it is useful to define a slightly 

weaker equivalence relation. We will say that M, M'  are equivalent if M O I 

M ~ ) I '  for invertible G modules I, I ' .  We denote by [M] the equivalence class 

of M under this equivalence relation. It was shown in [6] that if 

O--~ M - ~  P--~ E---~ O and O--~ M - ~  P'--~ E'---~ O 

are flasque resolutions, then E is similar to E'. Thus, if p(M)  is defined, as in [6], 
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to be the similarity class of E, p is well defined. We will modify this definition 

and set ~/(M) = [E]. Of course, -q is also well defined. A large part of this section 

will be devoted to defining ~/on maps between G modules. The idea is that T/is 

almost a functor. For technical reasons, we will define a genuine functor 7/' 

associated to -q. It is the "quasi-functorial" properties of ~ that will allow us to 

settle some relative lifting problems. 

Let M, M'  be two G modules. Two G maps f , f ' : M ~ M '  are called 

equivalent if f - f '  factors through a permutation module. That is, if there is a 

permutation module P and G maps g : M - - > P  and h : P - - , M '  such that 

h o g  - - f - f ' .  We note without proof some easy facts about this relation. Let  

g : M"----> M and h : M ' ~  M* be G maps. If f is equivalent to 0 then so is fo  g 

and h o f. If f ' ,  f : M--> M'  are both equivalent to zero then so is f + f '  and - f. If 

IdM : M--->M is the identity then IdM is equivalent to 0 if and only if M is 

invertible. With these facts, it is easy to see that we have defined an equivalence 

relation on Homo (M, M'). We denote by [f] the equivalence class of f. 

With this equivalence relation, we will define a quotient category as follows. 

Let M be the category of ZIG]  modules which are finitely generated free over Z. 

Let ~ be the full subcategory whose objects are flasque modules. Using the 

equivalence relation above, define ~ to be the quotient category of ~. That is, 

has the same objects as * but Hom~ (E, E ' )  consists of equivalence classes, [f], 

of maps. Note that ,,~ is an additive category and that 0 is the zero object for ,~. 

LEMMA 2.2. Let E be a flasque module and I an invertible module. Denote by 

i : E ~ E @ I the canonical inclusion and p : E @ I --> E the canonical projection. 

Then, in ~, [i] is an isomorphism with inverse [p]. 

PROOF. p o i is the identity on E and i o p : E @ I---, E O I maps E to E by 

the identity and maps I to 0. If g -- Id~e~ - i o p, then g is 0 on E and so factors 

through L Thus [i] o [p] -- [i op] = [Id~e,]. Q.E.D. 

The underlying idea is to try to define ~/: M --> ~. This won't  work because, in 

~, equivalent things are isomorphic and not identical. Instead, we define 

7 ' : . / / ~  9~ as follows. For each M in M, choose a flasque resolution (in an 

arbitrary way). If f : M ~ N is a morphism in M, we have the following diagram 

where the horizontal maps are these chosen resolutions: 

O---~ M--* P---> E---~ O 

O-'* N---> O---~ D---> O. 
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Here g' exists by 2.1 and g is induced by g', Then rt '(f) is [g], by definition, and 

so r / ' ( M ) =  E and r / ' ( N ) =  E' .  

We must show r t' does not depend on our choice of g'. So suppose h ' :  P---~ Q 

is another extension of f and h : E --* D is the induced map. g' - h '  is zero on M 

and so induces a map E ~ O. g -  h is the composition of this map and the 

map 0 --~ D, and so [g] = [h]. 

Next let us consider the dependence of rt' on our choice of resolutions. 

Suppose O--~M---~P'--~E'--*O and O---~N--*Q'-----~D'---~O are other flasque 

resolutions. We form the pushouts P@MP' and Q@NO'. By the basic 

properties of pushouts, there are exact sequences 

O--~ P--~ P @M P'--~ E'--~ O and O--~ P'--~ P @M P'---~ E--~ O. 

Since E and E '  are flasque, P @MP' ~ P @ E '  ~ P'  @ E. Similarly, Q @N O'  ~- 

Q @ D '  ~ Q'  @ D. Also, there are exact sequences 

O--~M-~P@P'--~P@MP'---~O and O - ~ N - ~ Q @ Q ' - ~ Q @ N Q ' - ~ O .  

Let g', g be as above and choose K': P'---~ Q' to be an extension of f. K '  induces 

a G mapK:E'--~D'.  If we set 

h ' = g ' @ k ' : P @ P ' - - ~ Q @ Q ' ,  

then h'  also extends f and induces a G map h :P @MP'--~ Q @NQ'. An easy 

check shows that the following diagram commutes: 

E < P ~ M P '  >E' 

D < Q @ N Q '  >D'. 

In :~, the horizontal maps are isomorphisms and so [g] and [k] differ by 

isomorphisms. 

It is quite unpleasant to deal with r/', since it depends on a choice of 

resolutions. What we will do, then, is abuse notation and write ~ (M)  = [~7'(M)], 

~/(f)=[7/ ' ( f)]  where we have identified morphisms in ~ which differ by 

isomorphisms. In the other sections of this paper, we will use r / an d  not ~1'. This 

cannot lead to a contradiction because we are really only interested in whether 

~( f )  is [01. 

To summarize, then, ~ ( M ) =  [0] if and only if there is an exact sequence 

O--o M--~ P ~ I--~ 0 where P is a permutation module and I is invertible. Of 
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course, z/(IdM) = [0] if and only if r / (M) = [0]. This next result gives a criterion 

for when r / ( f ) =  [0] for any G map f. 

THEOREM 2.3. Let f : M ~ N be a G map. r / if)  = [0] if and only if there is a 

diagram, with the bottom row exact, as follows: 

(2.4) P 

0---~ N---~ N'---* O ---~ 0 

where P and 0 are permutation modules. 

PROOF. Suppose (2.4) is given. Let  0 ~ M ~ L --~ E ---* 0 and 

0---~ N'--~ K--~ D ~ 0 be fiasque resolutions. By composition we can form the 

sequence 0 ~ N--~ K ~ D'--* 0. We note that D '  is an extension of O by D, so 

D '  -- O (~ D. Denote by f '  the composition M---~ N--* N'.  If g ' :  L ~ K extends 

f ' ,  it also extends f. Thus if g' induces g l : E - - - ~ O ( ~ D  and g2:E---~D, then 

'(f) is [g~], up to isomorphism, and ~/'(f') is [g2] up to isomorphism. We have: 

E ~ E  

g l I I g2 
Q ~ ) D  ~ D 

and so [0] = [gt] if and only if [0] = [g2]. Now r/ ' (P) is isomorphic, in ~, to 0 and 

r/' is a functor, so ~ '0  c') = [0] implying that r/ 'ff) = [0]. By our abuse of notation 

(above), 7 ( / )  = [0]. 

Conversely, suppose that 7/if) = [0]. Choosing flasque resolutions for M and 

N we conclude that there is a diagram: 

O-~ M-'~ P--; E--~ O 

O--~ N- '* O--~ D'-* O 

where P, Q, and P '  are permutation modules and E, D are flasque. Form the 

pullback O x o P '  and insert it into the diagram. We have: 

O---~M ' ~ P .~ E----~O 

,1 I 1 
0---~ N--~ O XD P"--* P'--* 0 

I I 1 
0---~ N------~ O ~ D--*0.  
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Rewriting some of the maps above we have: 

O--~M ~ M ---~0 

0-"-~ N"-~ O • P'-'--~ 0. 

This proves the converse. O.E.D.  

We end this section with some calculations, the first of which will prove that 

~7(/)~[0] for a specific map / .  Suppose G'C_G is a normal subgroup. Set 

I~, C_ Z[G]  to be the left ideal generated by all elements of the form ~ - 1 where 

o" E G ' .  

PROPOSITION 2.5. Let M be a G module, set N = M/Io,M, and let [ : M ~ N 

be the natural map. Then f factors through a permutation module if and only if N is 

inverfible. 

PROOF. If N is invertible, then it is clear that f factors through a permutat ion 

module. Conversely, suppose f factors as h o g where g : M --~ P, h : P --~ N, and 

where P is a permutat ion module.  Since Io,N = 0, h factors as h2oh~ where 

h2: P/Io,P---> N and hi : P--> P/Io,P. If g' = hi o g : M--> P/Ic,,P, then g '  factors 

through N =  M/Ia,M. That  is, g ' = g " o f  where g": N-~P/ I6 ,P .  All in all, 

h2o g" = IdN since h2 o g" o f = h2 ~ g' = h o g = f. Thus it suffices to show that 

P/Ia,P is a permutat ion module. But Z [ G / H ] / I 6 , Z [ G / H ]  = Z [ G / G ' H ]  and so 

we are done. Q.E.D.  

For any finite group G, set J6 to be Z[G]/ZtG where t~ = X ~  o-. If N C G is 

a normal  subgroup, there is a natural G map JG--~ J6/N where, of course, Jc,/N 

can be considered to be a G module. This map is defined by sending 1 + ZtG E J~ 

to 1 + Zt~m E J6m. The proof of the following result about the J6 ' s  borrows a 

lot f rom the discussion in [6], p. 183. 

THEOREM 2.6. Let p be a prime and let G be a finite abelian p group of rank 2. 

Suppose N C G is a subgroup such that G / N  also has rank 2. If f is the map 

Ja -'~ Jam defined above, then -q (f) ~ [0]. 

PROOF. Let tr, r be a basis for G such that tr + N and r + N are a basis for 

G/N.  Consider the exact sequence 0--* Z --~ Z[G]  --~ Z[G]  �9 Z[G]  ---) Eo ~ 0 

where Z is the G module with trivial action, 1 ~ Z maps to t6 E Z[G]  and 

1 E Z[G]  maps to ( t r -  1, r -  1) E Z[G]  ~) Z[G].  Ec is defined by this se- 

quence. Calling h the map Z --~ Z [ G ] ,  we have that JG is the cokernel of h. Thus 

we have two short exact sequences 



178 D.J. SALTMAN Isr. J. Math. 

O---~ Z----> Z[G]---> Jo---->O and O--~ Jo--> Z[G]OZ[GI-~ Ec-~O. 

If G'C_ G is a subgroup, H-I(G',Eo) = H~ = HI(G',Z) = (0). Hence 

Eo is flasque and T/(Jo)= [Ea]. Similarly, there is a resolution 

0-~ Z - ,  Z[G/N]--, Z[G/N] 0 Z[G/N] ~ Eo/N ~ O, 

and r/(J6/N) = [Eo/N]. The natural map Z[G] 0 Z[G]-~ Z[G/N] @ Z[G/N] 
induces a mapg:Ec-->Eo/N and r t ( f ) = [ g  ]. Explicitly, E~(E6/N) is 

Z[G] @ Z[G] (Z[G/N] @ Z[G/N]) modulo the left submodule generated by 

(a~ - 1, ~" - 1) ((crN - N, zN - N)). It is now easy to see that Eo/INEo = E~m and 

g is the natural map. By 2.5, it suffices to show that J~N is not invertible. This 

was shown in [6]. Simply outlined, 

H1(G/N, Ecm)=H2(G/N, Jom)~H3(G/N,Z)#O. Q.E.D. 

In the theory of algebras, the following G module is of particular interest. Let  

G be a finite group and let P be a free Z[G] module with basis 

{~(tr, z) l 1 # or, ~- E G}. Consider R C P to be the left Z[G] submodule gener- 

ated by all expressions of the form 

~(tr, ~') + 5(o-~, r/) - tr (~(z, ~/)) - ~(cr, ~',/) for all o-, r, ~ E G, 

where we have set ~(1, or) = ~(o', 1) = 0. Define M2(G) = P/R. One should think 

of M2(G) as the module generated by a "generic" two cocycle of G. 

Set c(tr, r)= ~(o', ~')+ R E M2(G). The form of the relations in R makes it 

clear that M2(G) is a free Z module with basis {c(tr, z) l 1 # o-, z E G}. Note that 

if H<~ G is a normal subgroup, there is a natural G module 

mapM2(G)--->M2(G/H) defined by sending c(o',z) to c(o-H,~'H). Our final 

result of this section will be a study of the M2(G)'s in a special case. In [2], a 

study of abelian crossed product algebras was made using a description of 

abelian crossed products that is essentially due to Dickson. Here we are going to 

perform an analogous argument for G modules, but restricting ourselves to rank 

2 abelian groups. So let G be an abelian group with generators or, ~" such that 

G = ( t r )@(z) .  We first consider the following module. Let 

n = ( o r ) ,  K = 0 " ) ,  and Q = Z [ G ] E )  Z [ G / H ] O Z [ G / K ] .  

Consider R'C Q to be the left submodule generated by ( l + t r  + . . - +  
r t - 1  tr , r H  - H, 0) and (1 + r + .  �9 �9 + rm-1, 0, crK - K),  where n is the order of or 

and m is the order of z. Set N = Q/R'. We can think of N as the module 

generated by u, b, c subject to the relations 
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or(b) = b ,  ~ ' ( c )  = c ,  (1  --~ o -~- �9 * �9 + o ' n - l ) u  = ~ ' (b) -  b ,  

and (l +r+...+~"-')u=or(c)-c. 

The result of Dickson (appearing in [2]) has as a special case that any crossed 

product algebra A(L/F, (3, d) can be described via u', b', c ' E  L* which satisfy 

exactly these relations. More precisely, let 

a(L/F, G, d) = ( ~  Lu, 
~IEG 

where u,u~ = d(~?,6)u,~ and u,z = ~l(z)u, for all z E L .  If we set 

u'=u~u, u2'u~', b ' = ( u ~ ) " ,  and c ' = ( u T )  m, 

then u', b', c '  are as claimed (but note that L* is a multiplicatively written G 

module). In terms of the cocycle d, 

u'  = d(or, r )d ( r ,  or) ~, c '  = d(r,  r ) d ( t  2, ~')" �9 �9 d (~" - ' ,  r )  

and b' = (d(or, or)d(o -2, or).., d(or ~ ', or))-'. 

In pure module terms, there is a G map g : N--> M2(G) defined by setting 

g(u)=c(or, r)-c( 'r ,  or), g (b)=-c(or ,  or)-c(or2, or) . . . . .  c(or~-~,or) 

and 

g ( c )  = C('T, "I')DV " ' "  "J- C('T m- l ,  "7"), 

To show that g is well defined, one must show that these elements satisfy the 

relations defining R' .  To avoid doing this directly, one can take L / K  a G Galois 

extension of fields, set K ' =  O(L/K, M2(G)) (which will be defined in w and 

L '  = L ~)~K' .  Now use the c(r/, 6) which generate M:(G) to define a crossed 

product ~(L'/K',  G, c), and then quote [2]. 

Next we consider M2(G)/g(N) = M'. Set c'(r/, 6) = c(r/, 6 ) +  g(N). Consider- 

ing the algebra case, we see that the cocycle c' must be split. In fact, an easy 

argument (one can use algebras again) shows that the necessary coboundary can 

be defined as follows. Set 

d ( 1 ) = l ,  d ( o r ) = l ,  d ( r ) = l ,  

d (or') = c'(or, o')c'(or 2, or)" �9 �9 c/(o "i-1 , o') 

d(~ "j) = c'(~-, ~ ) . . -  c (~"-', r )  

for i > 1, 

for j > 1, 

and 



180 D.J. SALTMAN Isr. J. Math. 

d(o~"r~)=c'(cr, o ' ) . . . c (o  "' ' ,cr)c(r ,r)"  "c(rJ-','c) for i , j > l .  

Then for any e, 6 E G, c'(e, 6 ) = d ( e ) + e d ( 6 ) - d ( e 6 ) .  In particular, M'  is 

generated over Z[G] by the d(e)'s.  
We further analyse this situation as follows. Define H:Ja--~ N by setting 

h(1 + Zt~) = u. Then N/h(JG) is easily seen to be isomorphic to Z @ Z. Let q be 

the order of G. M2(G) has Z rank (q - 1) 2. N is generated by q + 1 elements 

over Z. Thus M'  has Z rank greater than or equal to ( q - 1 ) 2 - ( q  + 1)= 

q (q - 3). It follows that M'  is a free Z[G] module with basis {d(e) [ e # 1, cr, r}, g 

is an injection, N is a free Z module of rank q + 1, and h is an injection. 

THEOREM 2.7. Let G be a finite abelian group (cr)G(z) as above. 
(a) "q(Jc ) = Tl(Mz( G )). 
(b) Suppose H C G is a subgroup such that G / H = ( o , H ) O ( r H ) .  Let 

[ : J~ ~ J~/, and g : M2(G)~  M2(G/H) be the canonical maps. Then n(g) = 

n q) [01. 

PROOF. Part (a) is done above and (b) is an easy diagram chase. Q.E.D. 

w Retract rational extensions 

In this section we begin the core of this paper; the study of a class of field 

extensions called retract rational. These extensions were first introduced in [25], 

where some of the results we are about to present were stated, and occasionally 

given sketchy proofs. Here we will use the general language of w to give 

complete and very general proofs of the result in [25]. 

As we are about to see, the concept of retract rationality arises naturally when 

one studies lifting problems. To motivate the definition to come, recall that a 

rational (or purely transcendental) field extension K/F  is one where K contains 

x~,.- . ,  x, algebraically independent over F and K = F(x~,. . . ,  x,). It is useful to 

think of K as a "free"  object with basis x l , ' - - ,  x,. Retract rational extensions 

correspond to projective objects. 

DEFINITION 3.1. Let K _~ F be fields. K/F  is called retract rational if and only 

if K is the quotient field of an F algebra domain S C_ K, such that there are F 

algebra maps 

q~ :S--*F[x~, . . . , x , ] ( l /w)  and d~ : F [ x ~ , . . . , x , ] ( l / w ) ~ S  

where F[x~,.. ", x,] ( l /w) is a localized polynomial ring and ~0 o~ is the identity 

on S. 
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Retract  rationality often corresponds to the lifting property of a single F class. 

Later  on, we will study a relative lifting problem between two F classes. The 

corresponding field theory concept will be defined next. 

DEHNITION 3.2. Let  S, R be F algebra domains,  and let q~ : S --* R be an F 

algebra map. We say q~ ]:actors rationally if and only if there is a localized 

polynomial ring F[x~, . . . , x , ] (1 /w) ,  a O~ r E R ,  and F algebra maps 

4  ̀:S--~ F [ X l , ' " , x , ] ( 1 / w )  and 7 l : F [ x l , . . . , x . ] ( 1 / w ) - ~  R(1/r)  

such that q~ = "O ~ 4 .̀ 

Let us make a few elementary definitions and observe a few easy facts. If S, T 

are F algebras, and ~:S---~ T; 4 ` : T - ~ S  are F algebra maps such that 

4' ~ = Ida, we say that S is a (4`, q~) retraction of T. If the maps need not be 

specified, S is just called a retraction of T. If T has the form F[x~, . . . ,  x, ] ( l /w) ,  

we say S is a localized polynomial retraction. Suppose S, T are domains and S is 

a (4`, q~) retraction of T. If 0 ~ s E S, then S(1/s) is a retraction of T(1/~(s)) via 

the unique extensions of 4  ̀and q~. More generally, if q~ : S --~ T factors rationally, 

and s E S  satisfies ~p(s)~0,  then the unique extension of ~ to 

q~:S(1/s)--~ T(1/~(s)) factors rationally. Also, the relation of retraction is 

transitive. That  is, if S is a retraction of T and T is of R, then S is a retraction of 

R, via the obvious maps. If S is a retraction of T, then clearly S[x~, . . . ,  x,] is a 

retraction of T[xl," �9 ", x,]. 
The effect of the above observations is that, to some extent, the definitions 3.1 

and 3.2 are independent of the domains involved. But to make this clearer, we 

present a result of Swan's. For convenience, we include a proof. 

LEMMA 3.3. [27] Let F C_ K be fields, and let S,, $2 C K be affine F subalgebras 
such that q(S~)=K. Then there are O ~ s ~ S ]  and O ~ s 2 E S 2  such that 

S,(1/s,) = S2(I/s2). 

PROOF. Since S~ is finitely generated, there is a 0 ~  s~ES2 such that 

S, C_ $2(1/s'2). Since S2(1/s') is finitely generated,  there is an s, E S, such that 

S2(1/s~)C_S2(1/s~). But s ,=t / (s ' )"  for some positive integer n and some 

0 ~  t E $2. We now claim that S,(1/s,) = $2(1/s2) where s2 = s't. Note first that 

$2(1/s2) = S2(1/s')(1/t). So, in order to show that S(1/s~) D_ $2(1/s2), it suffices to 

note that 

1/t = ([/s,)(1/sg" ~ S,(1/s,). 

In order to show that S,(1/s,) C_ $2(1/s2), we observe that 1/s, = (s')" /t ~ S._(1/s2). 

Q.E.D.  
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Combining this lemma and the observations preceding it, we conclude the 

following. 

COROLLARY 3.4. I f  K / F  is retract rational, and S C_ K is an affine F sub- 
algebra such that q ( S ) = K ,  then for some O ~ s E S ,  S(1/s) is a localized 
polynomial retract. 

Now is a good time to notice a useful fact which was part of the proof of 3.3. 

Let  S" be a domain with q ( S " ) =  K. For some 0 ~  s"ES" ,  set S ' =  S"(1/s"). 
Repeat  the process for some 0 ~ s' ~ S'. That  is, set S = S'(1/s'). But now notice 

that S also has the form S"(1/t). In fact, if s ' =  t'/(s")" then S = S"(1/s"t'). 
Up to now, we have implied that the concept of factoring rationally is a 

generalization of retract rationality. We make this precise in the next lemma. 

LEMMA 3.5. Let S be an affine F algebra domain and set K = q(S). K / F  is 

retract rational if and only if the identity i : S --~ S factors rationally. 

PROOF. If K / F  is retract rational, it follows by 3.4 that for some 0 ~ s E S, 

S(1/s) is a localized polynomial retract. In other words, the inclusion 

i :S  ~ S(1/s) factors through a localized polynomial ring. Conversely, suppose 

that there are 0 ~ s E S, 

q~ : S---~ F [ x l , . . . , x , ] ( 1 / w )  and ~ : F[x~,. .  .,x,](1/w)---~ S(1/s) 

such that ~b o ~ = i. Set v = ~(s)  and note that ~ (v)  = s. Thus ~ extends uniquely 

to 
q~ : S(1/s)---~ F[x, , .  . . ,x ,](1/wv)  

and 6 extends uniquely to 

:Fix , , . . . , x . l (1 /wv)-o  S(1/s ). 

Now ~ o q~ must be the identity on S(1/s), so S(1/s) is a localized polynomial 

retract. Q.E.D. 

We will now review some classical kinds of field extensions, and begin to see 

where retract rational extensions fit in. A field extension, K/F,  is called 

unirational if K C_ L, where L / F  is a rational field extension. An immediate 

consequence of' the definition is that every retract rational extension is uni- 

rational. Already in [25], and again in Theorem 4.12 to come, examples are 

presented which show the converse false. 

Two fields, K, L, are called stably isomorphic over F if there is an 

isomorphism K ( y , . . . ,  y , ) ~  L(z~ , . . . ,  zm) over F, where the y 's  and z 's  are 
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indeterminants. An extension K / F  is called stably rational if K is stably 

isomorphic, over F, to a rational extension of F. We are about to show that stably 

rational implies retract rational. More so, we are about to show that retract 

rationality respects stable isomorphism. But before we state the result, let us 

again point out that the converse is false. Swan showed that if G = (747 is the 

cyclic group of order 47, and K is the field of invariants (under the obvious 

action) of G on Q(xg [g E G) then K / Q  is not stably rational. However,  as was 

pointed out in [25], and will be stated below, K / Q  is retract rational. 

PROPOSITION 3.6. (a) Let K, L be fields which contain F and are stably 

isomorphic over F. If L / F  is retract rational, then so is K/F. 

(b) Let S, T, and T' be F algebra domains, where T C_ T'. Assume q~ : S --> T is 

an F algebra map, and assume that q (T ' ) /q (T)  is rational. If the composition 

S ~ T--> T' factors rationally, then so does ~. 

We begin this proof by stating and proving a lemma, which follows. 

LEMMA 3.7. Suppose S is an Fatgebra domain, and T = S[x~,. .  ., x ,](1/s)  for 

some 0 ~ s E S [x~, �9 �9 x, ]. Then for some 0 ~ s ' E S, S (1/s') is a ( ~, r ) retraction 

of T(I/s ') ,  where ~ is the inclusion. 

PROOF OF LEMMA. Since F is infinite, there is an F algebra homomorphism 

~b : S [ x , , . . . , x , ] ~  S such that s' = $ ( s ) ~  0, and such that ~ is the identity on S. 

In fact, r can be chosen in F. This map ~b extends uniquely to an F algebra 

map 

: T = S[x, , ."  ",x,](I/s)--~ S(1/s'). 

We may consider s' as an element of T and note that ~ extends to 

tp : T(l/s')--~ S(1/s'), where ~b is the identity on S(l ls ' ) .  In other words, if ~0 is 

the inclusion S(1/s') C T(1/s'), S(1/s') is a (r ~)  retraction of T(1/s'). Q.E.D. 

We now return to the proof of 3.6. To begin with (a), say L = q(S)  where S is 

a retraction of F[x , , . . . , xm](1 /w) .  Hence S [ z l , " ' , z , ]  is a retraction of 

F[x~,"  ", xm, z , , "  ", z ,](1/w).  Of course, 

q ( S [ z , , . . . , z , ] ) = L ( z ~ , . . . , z , ) .  

Thus we may assume K ( y l , ' '  ", y , ) =  L where L / F  is retract rational. Suppose 

K = q(T)  where T is an affine F algebra. By 3.4, there is a OF t E T[y~,. . . ,  y,] 

such that T[y~ , . . . ,  y , ] ( l / t )  is a localized polynomial retract. But by Lemma 3.7, 

some T(1/t') is a retraction of T[y~, . . . ,y .](1/ t t ' ) .  By the basic properties 
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mentioned above of retractions, this later algebra is also a localized polynomial 

retraction. Then we are done by the "transitivity" of retractions. 

To prove (b), assume t' E T' is such that the map S ~ T'(1/t ' )  factors through 

a localized polynomial ring. By Swan's lemma, we may assume 

T'(1/ t ' )  = T [ y , , . . . ,  y, ] ( l / t )  for some 0 ~ t E T[yl, �9 �9 ", y. ]. 

To be explicit, assume the given map ~ ' : S - - ~  T [ y l , - - . ,  y , ] (1/ t )  factors into 

~O:S- - -~F[x , , . . . , x , , ] (1 /w)  and ~ / : F [ x , , . . . , x , , ] ( 1 / w ) - ~  T [ y , , . . . , y , ] ( 1 / t ) .  

For some 0 ~ s  @T, we know by 3.7 that T ( l / s )  is a (6, i) retraction of 

T [ y , , . . . ,  y ,](1/ ts) ,  where i is the inclusion. Hence, as maps from S to T(1/s) ,  

~o = 6 o ~o'. Thus q~ is the composition of tp and 

6 o ~1 : F [ x , , . . . ,  x,,](1/w)---~ T(1/s) .  Q.E.D. 

We have now covered most of the (known) elementary or basic properties of 

retract rational fields. What is lacking is a clearer reason why retract rationality is 

analogous to projectivity. This is the point of the next result. Before presenting 

this result, let us make two comments. What the following result does not do is 

make retract rationality exactly projectivity in some category. This may be 

possible, and also may be fruitful. Second, the following result has a form that 

will be repeated. We will first state (for clarity) a result about retract rational 

fields, and then state an analogous, more general result for rationally factoring 

maps. Though the first statement will seem more intuitive, the second, more 

general statement, is necessary for one of our applications. 

THEOREM 3.8. Let  K / F be an extension of fields. The following are equivalent: 

(i) K / F  is retract rational. 

(ii) K is the quotient field of  an affine F algebra S which satisfies the following 

condition. Suppose T, M is a local F algebra, L = T / M ,  p : T---> L is the canonical 

map, and r : S - ->L  is an F algebra map. Then there is an F algebra 

map  ~ ' : S --> T such that p o ~ ' = ~. 

The proof of the above theorem will be encompassed in the following more 

general result. 

THEOREM 3.9. Let q~ : S ~ R be an F algebra map between F algebra do- 

mains. Then the following are equivalent. 

(i) q~ factors rationally. 

(ii) There is a OF r E R such that the induced m a p ~  : S ~ R (1 / r )  has the 
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following property. Suppose T, M is a local F algebra, L = T / M ,  p : T ~ L is the 

canonical map, and ~b : R(1/r)---~ L is any F algebra map. Then there is an F 

algebra map ~b' : S --> T such that p o ~, = ~b o q~. 

PROOF. First, let us show how 3.9 implies 3.8. If K / F  is retract rational and 

K = q ( S )  where S is a localized polynomial retract, then the identity i : S - ->  S 

factors rationally. Quoting 3.9(ii), we have that some S(1 / s )  has the property 

3.8(ii). (Actually, S itself satisfies 3.8(ii), but this is not important and only occurs 

because of our choice for the form of 3.9.) Conversely, suppose 3.8(ii) holds for 

such S. By 3.9, the identity i : S - ->  S factors rationally and 3.5 finishes the 

argument. 

Turning now to the proof of 3.9, let us assume 3,9(i). Explicitly, we assume q~ is 

the composition of 

r I : S - - - > F [ x , , . . . , x . ] ( 1 / w )  and ~ : F [ x l , ' " , x , ] ( 1 / w ) - - ~ R ( 1 / r ) .  

If T, M, L, p, and ~b are as given in 3.900, set a~ = q~(6(xi)). Choose b~ ~ T to be 

preimages of the ai. Define /x : F [x~ , . . . , x , ] (1 /w) - -~  T by/x(x~) = b~. /x(w) is a 

unit because pOx(w))  = ~(6(w))  ~ 0. If we now set 0 '  = / z  o 77, ~'  is the required 

map. 

Conversely, assume 3.9(ii). Since R ( 1 / r )  is affine, there is an F algebra 

surjection rt : F [ x ~ , "  . , x , ] - * R ( 1 / r ) .  Let P be the kernel of ~, and form the 

local ring F [ x ~ , . . . , x , ] p - =  T. If M is the maximal ideal of T, and K is the 

quotient field of R, then T / M  = K. "q extends to the map rt : T--> K. Applying 

3.9(ii) to the inclusion i :R (1 / r ) - - -~K,  we have an F algebra map 

~b : S - - ~ F [ x , . . . , x , ] p  = T such that ,1 o~b = i oq~. Since S is affine, 

q J ( S ) C F [ x l , . . . , x , ] ( 1 / w )  for some w ~ P .  

Also, r/ yields a surjection 

: F [ x l , . . . , x , ] ( 1 / w ) - - - ~ R ( 1 / r v )  where v = rt(w). 

In all, q~ : S ~ R (1/rv) is the composition of qJ and 7/. Q.E.D. 

REMARK. Assume q ( R ) / F  is separably generated. Note that, in the proof 

that 3.9(ii) implies 3.9(i), it is then only necessary to consider T, M which are 

discrete valuation rings. This is because the T, M which occur in the proof are, 

first of all, nonsingular. But more so, by changing R ( l / r )  to R (1/rr') if necessary, 

we can write R ( 1 / r )  as the image of some F [ x ~ , . . . ,  x , ] (1 / s )  where n is less than 

or equal to one plus the Krull dimension of R. With this choice, the T, M that 

has to be treated is a discrete valuation ring. 
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Up to now, we have presented the properties of retract rational extensions 

without reference to lifting problems or F classes. However, 3.8 makes it clear 

that lifting problems are closely related to retract rationality. The next corollary 

states the precise connection. It is this connection, for some specific F classes, 

which led the author to consider retract rationality, and is the main justification 

for the concept's introduction. This next corollary is stated in the general 

language of w It should be thought of as an outline, which can be applied to 

proving lifting properties or retract rationality in some very concrete situations. 

Two examples will follow, and a third will come later in this paper. Once again, 

we will state the more intuitive fact about retract rationality first, and then the 

more general fact about rationally factoring maps. 

COROLLARY 3.10. (a) Let r163 be an F class, ~ / R  E qr a local projective object 

which is also densely representing. I f  K is the quotient field of R, then ~ has the 

lifting property if and only if K / F  is retract rational. 
(b) Let ~ C_ r163 be F classes of the same type, let J,t/R E qr be a densely 

representing object, and let ~ / S E r163 be a local projective object. Suppose r, S are F 

algebra affine domains, and ~ : S--> R is an F algebra map such that ~t 
~ , R  over R. Then (cs r163 has the (relative) lifting property if and only if 

factors rationally. 

PROOF. As before, (a) is a special case of (b). As for (b), assume (~, qg') has 

the lifting property. It is now very easy to see, using all the givens, that q~ : S ---> R 

satisfies the condition 3.9(ii). Conversely, suppose ~ factors rationally. Specific- 

ally, suppose q~ :S--> R(1/r)  satisfies 3.9(ii). Every N / K  ~ ~s for K a field, is a 

specialization of JR ~RR(1 / r ) .  Then 3.9(ii) implies that the lifting property 

holds. Q.E.D. 

We can now give two examples of the use of 3.10. Our first example will 

involve the F class of Azumaya algebras of degree n, which we recall was 

labelled ~t(F, n). Also recall that Z(F, n, r) is the center of the generic division 

algebra UD(F, n, r). 

THEOREM 3.11. Z(F, n, r)/F is retract rational if and only if ~t(F, n) has the 

lifting property. That is, if and only if for every local commutative F algebra T, M, 

and every simple F algebra A of degree n over its center K = T/M, there is an 

Azumaya  algebra B / T  such that B @ r K  ~- A. 

PROOF. By 3.10, we must present an appropriate densely representing local 

projective object. Let A '  = R (F, n, r) be the ring of generic matrices with center 
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C'. There is a 0 ~  s ' C  C' such that A = A'(1/s') is Azumaya over its center 

C = C'(1/s'). As A is finite as a module over C, an exercise (called the 

Art in-Tate  lemma) shows that C is affine. By 1.3, A / C  is a local projective 

object. A / C  is also densely representing. If 0 ~  t E C, we can write C(1/t)= 
C'(1/s) for some 0 ~ s  ~ C ' .  If B is a central simple algebra over K ~ _ F  of 

degree n, then by e.g. [13], page 92, there is an F algebra map $ : A'---~ B such 

that ~0(s)E K is nonzero. Thus q~ extends to a map ~b:A QcC(1/t)--* B. Let 

q~ : C(1/t)---~K be the restriction of ~0. Since A / C  is Azumaya, ~0 induces an 

isomorphism A(1 / t )@~K ~- B. Q.E.D. 

Our second application of 3.10 is to F classes of Galois extensions. Recall that 

the F class of all Galois extensions with group G was denoted g'(G). Now let V 

be a finite dimensional left F[G] module such that the map G ~ Hom~(V, V) is 

an injection. Form the symmetric algebra F§ V], and its quotient field F . (V) .  G 

acts on F . ( V )  in the obvious way. 

THEOREM 3.12. F.( V) c"/F is retract rational if and only if ~ ( G ) has the lifting 
property. 

PROOF. Once again, we must present a local projective densely representing 

object. By our assumptions, G acts faithfully on F+(V) and so F§ c" is 

G Galois. Set R " =  F+[V] ~. Since R" has quotient field F+(V) ~, there is an 

0 ~ r" E R" and a subalgebra S' C F. (V)  such that if R '  = R"(1/r"), then S' /R'  is 

Galois with group G, R '  is affine and S'F+(V) c = F+(V) (see [23], p. 274). By 

Swan's lemma, there are O ~ s ' ~ S '  and 0 ~ s  EF+[V]  such that S'(1/s')= 
F+[V](1/s). Let r' be the G norm of s' and r the G norm of s. S'(1/r') and 

F+[V](1/r) are both closed under the G action. It follows that 1/r'@ F+[V](1/r) 
and 1/rES'(1/r').  Hence S'(1/r')=F+[V](1/r). All in all we have R = 

F+[V]C~(1/r) and S = F+[V](1/r) such that S/R  is Galois with group G and R is 

affine. 

By 1.3, S/R  is a local projective object. It remains to show that S/R is densely 

representing. As a first step, we note that it suffices to prove the following claim. 

Suppose K _~ F is a field, L / K  is G Galois, and 0 ~  s E F+[V]. Then there is an 

F algebra map ~ : F+[V]--~ L such that q~ preserves the G action and q~(s)fi 0. 

This claim suffices because if r~ E R, we choose such a q~ with q~(rr,) ~ O. Hence q~ 

induces a G preserving mapq~:F+[V](1/rr')---~L and q~ restricts to a 

map ~0 : R(1/r')---~ K. Finally, q~ induces a K linear epimorphism from S @ , K  to 

L, which is an isomorphism by checking dimensions. 

Thus it suffices to prove the claim. Using duality over F, it is easy to see that 
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there is a free F[G] module W such that VC_ W. Since we can consider 

F+[V] C_ F+[W], it suffices to prove the claim for the free module W.K Also, 

since F§ C_ L+[W], it suffices to prove the claim for L+[W]. But L+[W] is 

nothing but a polynomial ring of the form L[xi,, [ 1 <- i <-_ n and g ~ G],  where G 

acts on the xi, g's in the usual way, and G acts on L. If W has rank one (i.e. n = 1), 

our claim is just the Dedekind independence theorem for L / K  (see [13], p. 283). 

For general W, let s E L+[ W]. By the rank one case, there are ag E L such that 

g(a,)  = ag, and s(ag,..  ",ah,X2,g,'" ",X2,h,X3,g,'" ",Xn,h)~O. 

We can proceed by induction to prove the claim. Q.E.D. 

Later on in this paper we will prove the lifting property for Azumaya algebras 

of prime degree and therefore, by 3.11, show that Z(F, p, r)/F is retract rational. 

In [23], generic objects were constructed for Galois extensions with abelian 

Galois group over certain F. These F classes have the lifting property, and we 

have the following corollary. 

COROLLARY 3.13. Let A be a finite abelian group, and 2" the highest power of 

2 dividing the exponent of A. Assume F is a field such that either F has 

characteristic 2 or F(p )/F is cyclic where p is a primitive 2 r root of one. Suppose V 

is a finitely generated F[A ] module such that A --~ HomF (V, V) is injective. Then 

F ( V )  A/F is retract rational. 

In [23], it was shown that if the exponent of A is a multiple of 8, then there is 

no generic object for A-Galois  extensions over the rational field Q. Thus, 

Q ( v ) A / Q  is not retract rational. One is thus led to ask as to exactly when 

F(V)  A/F is retract rational. The answer, to be given later, is that if F ( p ) / F  is not 

cyclic, then F(V)  A/F is not retract rational. 

Up till now, the only way to show that a field extension is not retract rational is 

to invoke 3.10 and some failed lifting problem. This does not, however, seem 

sufficient to product results like the one mentioned in the above paragraph. An 

examination of the previous work [16], [8], [29], [6], etc. makes it clear that it is 

important for these problems to examine so-called function fields of algebraic 

tori. In the rest of this section we will discuss these function fields and determine 

exactly when they are retract rational. This will allow us to solve problems of the 

type mentioned above. 

For our purposes, it suffices to describe these function fields as follows. Let G 

be a finite group, and L / F  a Galois extension with group G. Let M be a Z[G] 

module. As in w this will always include the assumption that M is finitely 
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generated free as a Z module. Form the group algebra (not the symmetric 

algebra!) L [M]. This is a domain, with quotient field we denote by L (M). G acts 

on L [ M ]  by acting on L and M, and so G acts on L(M). The field we are 

interested in is denoted by Q (L/F, M) and is equal to the fixed field L (M) G. 

It has been amply demonstrated in [27], [16], [8], [29], [6], that the fields 

Q(L/F, M) can be studied via groups of units of affine subrings of L(M). We 

now give an extremely brief summary of this theory, making use of the notation 

of w This summary will follow the exposition in [6], and we refer the reader to 

this source for further details. Recall that if M is a Z[G] module, and 

0 ~ M ~ P ~ E ~ 0 is a flasque resolution of M, then O (M) is defined to be the 

similarity class of E. 

Before continuing, let us make some notational remarks. For any ring R, we 

denote by R* the group of units of R. M, which in w was always written 

additively, is a subgroup of the multiplicative group L [M]*. We therefore must 

make the convention that when viewed as contained in L [M], M will be written 

multiplicatively. Otherwise, we will stick to the additive notation of w 

The study of the fields Q(L/F ,M)  starts with the observation that if 

S = L[M], then as G modules, S*/L* ~ M. In fact, if S C L(M) is any affine, G 

invariant unique factorization domain with quotient field L(M), then 

p (S */L *) = p (M). Also, Q (L/F,  M)  is stably isomorphic to Q (L/F,  N) over F if 

and only if p (M)  = p(N).  In particular, Q(L/F, M) is stably rational if and only 

if p (M)  = 0. In the proof of these facts it is observed that if P is a permutation 

module, then LIP] c is a localized polynomial ring. Note now that the same 

argument shows that L[P] ~ is a localized polynomial ring over F even when L is 

not a field, but only Galois over F. 

With the questions we wish to answer, it turns out to be appropriate to 

examine the relationship between the fields Q(L/F ,M)  and the map rt, as 

defined in w The main result along these lines is next. 

THEOREM 3.14. Let G, M, and L /F  be as above. 
(a) Q(L/F, M) is retract rational if and only if -r/(M) = [0]. 

(b) Let f :M--~N be a map of G modules and q~:L[M]~--~L[N] G the 

induced map of F algebras. Then q~ factors rationally if and only if r/(f) = [0]. 

PROOF. It suffices to prove (b), since (a) is the special case f = I d , .  So assume 

q~ factors rationally. That  is, assume that there is a 0 ~ s E L [N] 6 and F algebra 

maps 

~0 : L [M] ~ ~ F[xi," " ", x, ] (1/w), ~ : F[Xl," " ", x, ] (1/w) ~ L IN] ~ (1/s) 
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such that 6 o tp = ~p. Tensoring by L we have G preserving F algebra maps 

~' : L[M]---~ L[N l, ~' : L[M]~ L[x , . . . ,  x,](a/w) and 

: L I x , , . . . ,  x, ] (1/w)-.-, L IN] (1/s) 

such that 6 '~ +' = q/. All three of these maps restrict to G module maps on the 

groups of units modulo L *. We note that L [M]*/L * ~ M, 
L[xl,'",x,](1/w)*/L* is a permutation module we will call P, and N ' =  

L[N](1/s)*/L* fits into an exact sequence 0---~ N---~ N'---~ O ~ 0  of G modules 

where O is a permutation module. All our maps together constitute the 

following diagram of G modules, with the row on the bottom being exact: 

(3.15) t~e,, ,~ 
0 ~N >N' ~O >0 

Thus by 2.3 we have 7/(f)= [0]. 
Conversely, suppose r/(f) = [0]. By 2.3, there is a diagram (3.15). Let r  be the 

induced map L[M] G --~L[N'] ~. ~' factors through LIP]  ~, which is a localized 

polynomial ring. Finally, L(N')~/L(N) c is a rational field extension (see proof 

of theorem 6.8 of [28]), so we are done by 3.6(b). Q.E.D. 

In certain lifting problems, the following fields are relevant. Let G be a finite 

group, and let L/F be a finite extension of fields with Galois group G. Recall 

that a G module M2(G) was defined at the end of w as follows. M2(G) is 

generated by elements c(g, z) where 1 # or, z E G, modulo the relations which 

make c((r, z) a 2-cocycle. The fields we are interested in are the ones of the form 

O(L/F, M) where M = M2(G). 
The field Q(L/F,M)will be shown to be related to the following F class. 

Denote by M(L/F) the F class of Azumaya algebras which are crossed products 

of the form A(L @FR/R, G, d) where R is any commutative F algebra and 

d(g, z) is a two cocycle of G in (L ( ~ R ) * .  In formally writing these crossed 

products as linear structures, we will assume that the structures specify the 

embedding of L in the algebra. We can do this because L has a finite basis over 

F and so we can specify the image of each basis element in the algebra. The 

effect of all of this is that the morphisms (~b, q~): 

A(L @FR/R, G, d)/R --~ A(L (~FS/S, G, d')/S 

are exactly pairs (~b, q~) of algebra morphisms where ~b(L @FR)C_ L @vS and 

restricted to L Q F R  is just the map induced by q~. For example, an R 

isomorphism in ,if(L/F) can be specified by an algebra isomorphism 
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t) : A(L @FR/R, G, d)--~ A(L @FR/R, (3, d') 

such that 4~ is the identity on L @FR. We are specifically not assuming that the 

morphisms preserve the cocycles. 

We are about to apply 3.10 to the F class sf(L/F).  In order to make the 

application, we will describe a local projective densely representing object for 

eg(L/F). Set S = L [ M ] ,  R = L [ M ]  c. Since S = L  @FR, S/R, is G-Galois. 

Denote by c the G 2-cocycle which generates M = M2(G), and form the crossed 

product A = A(S/R, G,c). We consider A / R  as an object in ~4(L/F). 

LEMMA 3.16. A / R is a local projective densely representing ob]ect for ~ (L / F). 

PROOF. We begin by showing local projectivity. Suppose 

(0, ~P): B ' / T - - ~ B / V  is a surjective map in d ( L / F )  such that ~p ~(V*) = T*. Let 

(/x, ~): A/R--*  B / V  be any map in ~l(L/F). Explicitly, write 

B = A ( L @ F V / V , G , d )  and B ' = A ( L @ F T / T , G , d ' ) .  

The restrictions $'  : L @~ T ~ L @~ V and /z '  : S L @F V are induced by ~ and 

respectively. Using the norm of the extensions L @~ T~ T and L @r V~ V, it is 

easily seen that 

(~b')-'((L @F V)*) = (L @~ r)*.  

Also, ~b' is surjective. Let {u~}~c be the canonical S basis of A such that 

u,,uT =c(cr,~')uo, and u~,s =o-(s)u~. Let v~ and w~ be the corresponding 

elements of B and E' .  Now tx(u~,)v2' is a unit in L @F V we call g(o-), and 

~b(w~,)v2 ~ is a unit in L @F V we call f(cr). Note that 

Ix(c(cr, "r)) = g(o')cr(g(r))g(~rr) ' d(cr, z) 

and 

~b(d'(o-, z)) = f(~)~(f(z))f(o-z)  ~d(cr, ~'). 

Choose g'0r) ,  f'(~r) E (L @F T)* such that O(g'(o')) = g(o') and $(f'(o-)) = f(~r). 

Set 

w" = g'(~r)f'(o')-lw~. 

Then the (w'~)'s form an L @FT basis of B', w' t  = o-(t)w" for t E L @~T, and 

d"(cr, r )= w'(w')(w~) -~ satisfies qJ(d"(cr, z))=/z(c(o ' ,  r)). We can now define a 

G m a p h : M - - * ( L  @FT)* by h(c(cr, z))= d"(~r, z). The map h extends to a G 

preserving L algebra map 7' :L[M]--*L @FT. If we set 7(u~) = w ' ,  then 7' 
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extends to a map3~:A---~ B'.  If e is the restriction of T to R = L[M]  c, then 

(~b, ~)o (3', e ) =  (/z, iS). So local projectivity is proved. 

To prove the densely representing property, we first state a lemma. 

LEMMA 3.17. Let K be a field, and d(tr, r)U(L@~K)* a G 2-cocycle. 
Suppose O~s EL[M] ~. Then there is a G preserving L algebra map 

: L[M]---~ L @FK such that q~(s)JO and 

q~(c (or, r)) = d(cr, T)g(cr)cr(g(r))g(crr)-' 

for some g(tr) ~ (L @FK)*. 

PROOF. We begin by considering the G module M = M2(G). Let P be a free 

Z[G] module with basis {b(tr) I 1 ~ or E G}. Define f : M---~ P by setting 

f(c(o', Z)) = b(o') + o'b (r) - b(trr), where b(1) = 0. 

This G map f is clearly well defined. Recall that if n is the order of G, then M 

has Z rank ( n -  1) 2. By a similar argument, P/f(M) has Z rank n -  1. Since 

(n - 1) 2 + (n - 1) = n(n - 1) is the rank of P, f must be an injection. Using f, we 

can assume L[M] is a subalgebra of L[P]. 
Now view L [M] as a localized polynomial ring with the c (o-, r) 's as variables. 

To make the c's look more like variables, set c(~r, r)  = x~.~. Let s"(g(tr)) be s 

with d(tr, "r)g(o')(o'g(':))g(trr) -~ substituted for x~,,. The lemma exactly states 

that there are g(or) E(L@FK)* such that s"(g(o'))#O. View L[P] and 

(L @FK)[P]  as localized polynomial rings with variables o-(b(~-)). For the same 

reason as above, we set y~., = tr(b(~')). Let s 'E(L  @FK)[P] be defined as s 

with y~.~y~.,y ?.~d(~, T) substituted for x~,~. That is, let ~b : L[M]--> (L @FK)[P] 
be the unique G preserving L algebra map such that 

~b(x,,.,) = yl.~y~.,y]-.Ld(o', T), 

and set ~b(s)=s' .  Since sEL[M] ~, s 'E(L@~K)[P] ~. Suppose s ' ~ 0 .  

(L @~K)[P] a is a localized polynomial ring over K, so there is a K algebra 

map/x : (L @FK)[P] ~ ---~K such that IZ(S')~ O. Tensoring ,/ by L yields a G 

preserving L algebra map 

tz' : (L @FK)IP]--)L @FK 

such that /x ' (s ' )~ O. If q~ =/x 'o  ~b, then c# is the required map. 

Thus we end the lemma's proof by showing that s' ~ O. Let K" D_ K be a field 

extension splitting d(~r, r). That is, there are f(o')E (L @FK")* such that 
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d(o-,-c) = f(o-)o-(f(r))f(o-~-)-'. 

Viewing s as in L [P], i.e. as a polynomial in the y 's, we see that as an element of 

(L ~)FK")[P] ,  s' is just s with o-(f(r))y~: substituted for y .... Since the cr(f(~-))'s 

are units, s' ~ 0. Q.E.D. 

Having proved this lemma, we return to our proof that A / R  is densely 

representing. Let B / K  E s I (L/F)  be a crossed product A(L ( ~ K / K ,  G, d), 
where K is a field. If O ~ s E L [ M ]  ~, choose ~:L[M]--->L(~FK as in the 

lemma. ~ extends to a unique map~:L[M](1 / s ) - ->L@~K.  Denote by 

~' :R(1 /s ) - -~K the restriction of ~ (recall R = L[M]~) .  By our choice of ~, 

A ( 1 / s ) @ , , K  ~-B. Thus ~ '  realizes B and we have proved the proposition. 

With 3.16 in hand, we can invoke 3.10. The following theorem is the result. Its 

proof being easy, we will omit it. 

THEOREM 3.18. Let L/F, G, and M = M2(G) be as above. Then the following 
are equivalent: 

(a) n ( M ) =  [0]. 

(b) O(L/F,  M) is retract rational. 
(c) ~ ( L / F )  has the lifting property. 
(d) For all local commutative algebras T, M, the natural map 

Br(L (~)~ T / T ) - *  Br(L ~ :  (T/M)/ (T/M))  is a sur]ection. 

The curious thing about 3.18 is that one of the conditions, (a), is independent 

of L / F  and only depends on G. Later on, we will use a Brauer group 

computation to add two more equivalent statements, namely: 

(e) For all local F algebras T, M and al; G-Galois extensions S/T, the natural 
map Br(S/T)--> Br((S/MS)/(T/M)) is a surjection. 

(f) All the Sylow subgroups of G are cyclic. 

There is a relative version of 3.18 which we can also state. Let  G be a finite 

group, and N_C G a normal subgroup. Consider M2(G/N)= M' to be a G 

module, and let f :M2(G)--> M2(G/N) be the canonical map. f induces an F 

algebra map ~ : L[M]C--> L[M'] ~. Suppose L / F  is a G Galois extension, and 

K C_ L is the subfield associated with N. 

THEOREM 3.19. If  M, M', N, G, L, and K are as above, then the following are 
equivalent: 

(a) n ( f )  = [0]. 

(b) ~p : L [ M ]  ~ --> L[M'] c factors rationally. 
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(c) Suppose T, P is a commutative local F algebra, and set E = T/P. Then the 
image o[ the natural map Br(L (~rT/T)--->Br(L (~FE/E) contains 
Br(K •rE/E). 

PROOF. Let n = I N  I. Set M'(K/F)Csg(L/F) to be the subclass of all 

A/R E sI(L/F) which are split by K @rR.  In other words, B/E E s~'(K/F) for 

E a field are exactly algebras M, (B') where B ' =  A(K (~rE,  G/N, c). 
Set R '  to be the F algebra L[M'] o, S' = L (~rR'. If d(~rN, 7N) is the G/N 

2-cocycle which generates M'  = M2(G/N), denote by d'(o,, ~') = d(~rN, rN) the 

induced G 2-cocycle. Set A = A(S'/R', G,d'). Note that K ~ r R '  splits A. 

We claim that A/R'  is a densely representing object for M'(K/F). But, 
[A] = [A'] where A'= A(K @~R'/R', G/N, d). Also, R '  is equal to K[M'] ~ 
Thus by 3.16, A'/R' is a densely representing object for M(K/F). If B/E 
s~'(K/F) for E a field, write B = M , ( B ' )  where B'Esg(K/F). For any 

O ~ s ~ R ' ,  choose q~:R'(1/s)~E such that A'(1/s)@,E-~B'. Then 

A(1/s)Q,E ~ B, and the claim is proved. 

Next, set R = L [ M ]  ~ S=L[M] and A1=A(S/R,G,c) where c is the 

cocycle generating M = M2(G). Note that if q~' : L[M]---> L[M'] is the induced 

G preserving map, then d'(o-, T) = d(crN, I"N) = ~'(c(o', 7)). Hence A~ @ , R '  

A. All in all, 3.10(b) can be applied to show that (a) and (b) are equivalent to 

(M'(K/F),s~(L/F)) having the relative lifting property. And (c) is clearly 

equivalent to this same property. Q.E.D. 

w Cyclic extensions of 2 power order 

In [23] it was seen that cyclic Galois extensions of 2 power order behave 
differently from odd order cyclic extensions. In this section we will further 

explore this difference. We will be able to use the machinery of the first three 

sections to settle some questions in this area. In turn, some of the machinery of 

those sections was motivated by the application here. In particular, we refer to 

4.19. 

To turn to specifics, let Cq be the cyclic group of order q = 2'. Let F be a field 

and p = p(q) a primitive qth root of unity (p = 1 if F has characteristic two). We 

already know ([23], p. 257) that if F(p)/F is cyclic, then all Cq Galois extensions 

lift. What about the converse? If F(p)/F is not cyclic, is there a counterexample 

to lifting? In [23] this sort of question was attacked using the related approxima- 

tion problem and examples from algebraic number theory. But this approach 

cannot fully decide the issue; there are global fields F such that F(p)/F is not 

cyclic but such that all relevant local-global problems are solvable. In fact, in 
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4.13, we characterize such F. Nonetheless, we can use the machinery of the first 

sections to show that there is a counterexample to lifting for such F. 

To further study these cyclic extensions, we again turn to algebraic number 

fields for examples. In doing so, one discovers an interesting phenomenon.  

Suppose F is a global field and F'  is one of its completions at a prime of F. 

Assume that L ' /F '  is a G Galois. Of course, L '  may not pull back to a G Galois 

extension L/F.  However,  L ' O  L '  can be thought of as a C2q extension L"/F '  via 

the induction operation of [23]. It can be shown that the C,_q extension L"/F '  

pulls back to a C2, extension of F. 

This phenomenon raises two questions. Does the same thing happen for lifting 

Cq Galois extensions? Also, is this phenomenon special to number fields or does 

it hold for all Cq Galois extensions? We prove two sorts of results. First, that for 

many fields the corresponding lifting problem is solvable. And second, that it is 

not always solvable. 

Along the way, we will develop enough understanding of Cq Galois extensions 

to give new, perhaps more elementary, proofs of some relevant facts about Cq 

extensions of number fields. Included is another proof of Wang's counter 

example and a result that is a version of the full Grunwald-Wang Theorem. 

Before investigating these questions directly, we must make a series of 

preliminary comments. The first such topic we mention is cyclic algebras. In [24], 

it was shown that cyclic algebras behave well. Unfortunately, the following easy 

result was not precisely proved there. We do so here for easy reference. Before 

stating this result, we specify some notation in a situation that will often recur. If 

K is a field, and v is a valuation on K, we will denote by Ko the completion of K 

with respect to v. If v~,. �9 v, are a set of valuations on K, then K~ will denote 

the completion of K with respect to v~. 

PROPOSITION 4. I. Let cr be a generator of  C,. 

(a) Suppose T, M is a local F algebra with T / M  = K. Assume  S / T  is C, Galois, 

and set L = S @TK. I f  A = A( L / K, or, a) is a cyclic algebra, there is a cyclic 

algebra B = A( S / T, o-, a ') such that B @r  K -~ A.  

(b) Suppose v~,. �9 vm are inequivalent real valued valuations on K. Let L / K be 

a C, Galois extension and set L~ = L @KK~. I f  A~ = A ( L , / K ,  cr, a~) are cyclic 

algebras, there is an algebra A = A(L /K ,  o', a ) such that A @K K~ -~ A~ for all i. 

PROOF. part (a) is trivial. As for (b), note that one can use elementary 

arguments, or [23] p. 99, or [31], and conclude that there is an e > 0 such that for 

any of the v~, if a'~ E K satisfies vl ( a i -  a'~)< e, then 
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A(L,/K,, o-, a,) ~- A(L,K~, o-, a ;). 

Use the weak approximation theorem (e.g. [3], p. 48) and choose a E K such 

that v~ (a - a~) < e for all i. A = A(L/K,  o-, a)  is the algebra required by (b). 

Q.E.D. 

Later on, we will need information about some approximation questions for 

abelian crossed products. The next result will settle the global field case of what 

we need. Let  L, K be global fields, and L / K  a Gaiois extension with Galois 

group G = C2 ~) Cq where q is a power of 2. The following theorem gives precise 

conditions when elements of ~ ( L / K )  over local fields pull back to an element of 

~ t ( L / K )  over K itself. Note that the condition is given in terms of Hasse 

invariants (e.g. [21], p. 276). 

THEOREM 4.2. Let vl, " �9 ", vm be distinct valuations (or primes) on K, and set 

Li = L @KK~. Suppose A~ = A(Li/  K~, G, c~) has Hasse invariant mJ2q. There is 

an A = A(L/K,  G, c) such that A~ -~ A ~ K K i  if and only if one or both of the 

following conditions hold: 

(i) For some v not among the v~, L ~ Kv is a field. 

(ii) The sum of the m~ is divisible by 2. 

PROOF. The Brauer classes of the form [A(L/K,G,c)]  are exactly those 

whose Hasse invariants at any valuation w have the form r/n where n is the 

local degree of L at w. Also, of course, the Hasse invariants of any Brauer class 

must sum to zero. Set m/2q to be the sum of the Hasse invariants of the A~. By 

Tchebotarev density (e.g. [12], p. 168), there are infinitely many primes not 

among the vi's such that L has local degree q at those primes. If both (a) and (b) 

are false, and A exists, then the sum of the Hasse invariants of A at primes not 

among the v~ has the form r/q and (m + 2r)/2q cannot be in Z, a contradiction. 

Conversely, if (a) holds, choose v not among the v, such that L @rKo is a field. 

If (b) holds, let v be such that L has local degree q at v and v is again not among 

the v,. Let a E Br (K)have  Hasse invariants - m / 2 q  at v and m~/2q at v~. a will 

have a representative A as required. Q.E.D. 

It will be convenient to recall now some facts about the Brauer group of a 

rational function field K( t )  (see [9], [3]). Let P C K[t] be a prime ideal, set 

Kp = K[t]/P, and let Gp be the absolute Galois group of Kp. That  is, G~, is the 

Galois group of K~/Kp, where K~, is the separable closure of Ke. We denote by 

x ( G e )  the group of continuous homomorphisms Home (Gp, Q / Z ) ,  where Gp has 

the Krull topology and Q / Z  has the trivial topology. If f Ex(G~,) ,  then 
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N = kernel(f)  is such that Ge/N is finite and cyclic. If L is the fixed field of N in 

K~,, we say that f defines L. 

The Brauer  group Br(K(t))  is described via the x(Gv)'s, at least away from 

the characteristic of K. Suppose p is the characteristic of K. If A is any torsion 

abelian group, set A '  to be A if p = 0 and set A '  to be the p prime part of A if 

p # 0. There is an exact sequence describing the Brauer  group of K(t) as follows: 

(4.3) 0 ~ Br(K)'---~ Br(K(t))'---~ ~ X (Gv)'---~ 0 

where the direct sum is over all primes P C K[t]. For [A ] E Br(K(t)) ,  we denote 

by xp(A) the image of [A] in x(Gp). To work with (4.3), it is necessary to be 

able to compute the maps Xe. This is done via an exact sequence for complete 

fields. Let L be a field of characteristic the same p (for notational convenience). 

Considering the Laurent  series field L((s)), we have (e.g. [30], [3]) 

(4.4) 0 ~ Br(L )' ~ Br(L ((s)))' --~/' (G) '  --* 0 

where G is the absolute Galois group of L. Moreover,  the maps in (4.4) are 

functorial with respect to extensions of L. Finally, the map XL has the following 

properties. If M / L  is a cyclic Galois extension, with Galois group generated by 

or, then 

f = xL(A(M((s))/L((s)), o', s)) 

defines M and f(cr) = 1/n, n = [M : L].  On the other hand, if u E L((s)) is a unit 

in the power series ring, then 

x,- ( A ( M ( ( s ) ) / L  ((s)),  cr, u))  = 1. 

Returning to the field K(t), let P C K[t] be a prime. Denote  by K(t)e the 

completion of K(t) at P. K(t)e is a Laurent  series field over Ke, say Ke ((s)). The 

mapxe  is just the composition of the map Br(K(t))---~Br(K(t)p) and the map 

XKp : Br(Ke ((s)))---~ x(Ge). This fact, along with the functoriality of (4.4), has the 

following consequence important to us. We will omit the easy proof. 

LEMMA 4.5. Suppose [A] E Br(K(t) )  and fp = x~ ( A ). Let fp define the exten- 
sion Le/Ke. Assume L / K  is such that L(t) splits A. Then L @KK, contains an 
isomorphic copy of Le. In other words, any field amalgamation LKe contains Le. 

As a final preliminary topic, we mention some facts about the induced Galois 

extensions defined in [23]. Suppose K is a field and L / K  is Galois with group G. 

If G '  is a finite group containing G, then there is an induced Galois extension 

Indg'(L/K) which has Galois group G '  over K. As a K algebra, Indg'(L/K) is 
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just L ~]:) �9 �9 �9 ~) L. As a K[G']  module, Ind~ ' (L /K)  is just K[G']  @Ktol L. Recall 

further that, if L / K  is any G-Galois extension of a field K, then L / K  has the 

form Ind~(L ' /K)  where L '  is a field, and H =GaI (L ' /K) .  H is called a 

decomposition group of L / K ;  it is unique up to conjugation. In the next lemma 

we point out how decomposition groups and the Galois correspondence mix 

together. 

LEMMA 4.6. Let K be a field, and L / K  Galois with group G and decomposition 

group H. Assume N C G is a normal subgroup and that L '  is the fixed r~ng of N. 

Then H N / N  is a decomposition group for L ' /K.  Also, let L1 and L'I be the field 

direct summands  of L and L '  respectively. Assume that L~/K has Galois group H. 

Then L't is isomorphic (as a K algebra) to the subfield of L~ corresponding to 

H N N .  

PROOF. A decomposition group of L ' / K  can be described as a subgroup of 

G / N  fixing some primitive idempotent of L' .  Let e E L be a primitive 

idempotent  which H fixes. Let  n~,. �9 -, n, be coset representatives of H n N in 

N. Set 

f = n l ( e ) + " "  + n,(e). 

Then f is a primitive idempotent of L ' ,  and H N  is exactly the subgroup of G 

fixing f. That  is, H N / N  is the subgroup of G / N  fixing f. This proves the first 

claim. 
L~ is the field Le. There is an injection from L ' f  to L~ given by sending x to xe. 

Every element of this image must be fixed by H n N, since L '  is fixed by N and e 

is fixed by H. Checking degrees, we have that the image is exactly the fixed field 

of H O N. Q.E.D. 

We can now turn to the main body of this section, an examination of Cq 

extensions for q a power of 2. We fix some notation that will remain unchanged 

throughout this section. As always, F is the underlying field. For convenience, F 

will be assumed not to have characteristic 2. Set p = p (q) to be a primitive q th 

root of unity. F ( p ) / F  will always be noncyclic with Galois group H. Let  n be the 

order of H. H is generated by or, ~" where o'(p) = p-~ and r (p )  =pm for some m. 

The map T and the integer m will be fixed according to the following lemma. 

LEMMA 4.7. We may choose T, m such that m - 1 is a power of 2. Also, if s is 

the order of m modulo q, we may assume m s - 1 = kq where k is odd. 

PROOF. It suffices to show that if s divides q/4, then there is such an m with 

m ~ - l ( q ) .  This we prove by induction on q. If q =8 ,  m = 5  will do, as 
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5 2 -  1 = 8-3. For  general  q, suppose  first that  s ~  2. Choose  m = 1 + 2'  such that  

m has order  s/2 modulo  q/2,  and such that m s/2 = 1 + k (q /2 )  where  k is odd. 

Now 

m s = (1 + k (q /2 ) )  2 = 1 + kq + k2(q2/4) = 1 + (k + k2(1/4))q. 

We note  that m has o rder  s modu lo  q and that k + k2(q/4)  is odd.  This finishes 

the case s ~  2. If s = 2 set m = 1 + q / 2  and note  that  m 2 = 1 + (1  +q2/4)q.  

Q .E .D.  

If F ( p ) / F  were cyclic, then Cq extensions over  F could be described via the 

generic const ruct ions  of  [23]. The  basic idea is to adjoin p, and then to describe 

the resulting extensions. This me thod  can also be used in our  case, where  F ( p ) / F  

is not  cyclic. The  following theorem is the result. But  first, let us recall a bit of 

notat ion f rom [23]. If R is a commuta t ive  ring, and f ( y )  E R [y] is monic,  we set 

R{f(y)}  = R [ y ] / ( f ( y ) ) .  The image of y in R{f (y)}  is called a canonical  e lement .  

If R is a commuta t ive  F algebra,  then tr and ~- act natural ly on R '  = R Q v F ( p ) .  

For  r E R ', set N~ (r) = to-(r), 

m s  1 
MT ( r ) =  r ' - ' ( r ) r ~ - ' - ( r ) " ' ' ' r  , 

and 

N~.~ ( r ) =  rz ( r ) .  . . ,r ~ ~(r)tr(r)r(~r(r)).  . . ~-~-t(tr(r)). 

THEOREM 4.8. (a) A s s u m e  T is a local F algebra and S / T  is a Cq Galois 

extension. Consider S ' = S  ~ F ( p )  and  T ' =  T ~ F ( p ) .  S ' / T  is Galois with 

group Cq ~ 1-1. S '  ~- T'{y q - a }, where the canonical generator a E S '  satisfies the 

following: 1-(or)= arab -k, and tr(ot) = a - t z  -k where b , z  E ( T ' ) * ,  t r ( z ) =  z and 

N ~ ( b )  = z ( z ) / z ' .  A lso  a = M , ( b )  = ( t r ( w ) / w ) z  q/2 for some w E (T')*.  

(b) Conversely, suppose R is a commutat ive  F algebra, R '  = R • F F ( p ) ,  and 

b,z~(R')* satisfy ~(z)=z and N ~ ( b ) = z ( z ) / z " .  Set a = M ~ ( b ) .  I f  S ' =  

R'{y  q - a }  and  a E S '  is a canonical generator, then one can define o - ( a ) =  

a - l z  -~ and z ( a ) =  a " b  -k so that S ' =  S ( ~ r R '  where S / R  is Cq Galois. 

PROOF. We prove (b) first. If S '  is as given, we must  check that  o- and ~- are 

well defined on S' .  But  

r ( a )  = ~'(M, (b ) ) =  M . ( b  )"b -"'+' = a " b  -~  = ( a " b - ~ )  q = (~'(ot)) q, 

so r is well defined. Now 

N , , ( M , ( b ) )  = M . O ' ( z ) I z "  ) = z -e ,  
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s o  

o'(a ) = a - ' z  -kq = ( a - l z - k )  q = (O'(a )) q, 

and ~r is well defined. Also, 

r ' ( a )  = am~M,(b) k = a(am, - lM, (b) -k )  = a(akMr k) = a, 

and 

Hence or, z have orders 2, s respectively on S'. We check that 

~rr(a ) = or(arab -k) = a mz-kmr ) ~ = a-mb kr(z ) -k = r ( a  'z  -k) = r(cr(a)) ,  

where we have used that N , ( b )  = r ( z ) / z  ~. We conclude that or, r commute  on 

S'.  In all, the Galois group of R ' / R  extends to S'. Arguing exactly as in [23], p. 

258, the Galois group of S ' /R '  commutes  with this extension. If S is the fixed 

ring of o- and r in S',  then S / R  is as desired. 

As for (a), let S/T,  S' and T '  be as given. Since T is local, T '  is semilocal and 

the Kummer  description of Cq extensions can be applied to S' /T ' .  In particular, 

if ~7 generates Cq, then S ' =  T'{y q - a ' }  where the canonical e lement  a ' E  S'  

satisfies ~?(a ' )=  p a l  The maps ~r and z extend to S '  via their action on F(p),  

and commute  with 7- Since r'O = ~z, z ( a ' ) =  a " b '  where b'@ (T')*. Similarly, 

~ ( a ' ) = a ' - l z  ' for z ' E ( T ' ) * .  As ~ r 2 ( a ' ) = a  ', ~ ( z ' ) = z ' .  As r S ( a ' ) = a  ', we 

calculate that M, (b')  = a'k. If we set a = (a')k, a = a'k, b = b '- l ,  and z = z ' - l ,  

then ~r(a)= a - l z  -k, r ( a ) =  amb -k. Finally z(~r(a))= cr(z(a)) implies that 

N~(b)  k = ( z ( z ) / zm)  k. In other words, N~(b) = ( r ( z ) / zm)8  where 8 k = 1. If we 

choose 8 '  a power of 8 such that 8 = (8')  2, we have N~(b8 ' )= z ( z ) / z  m. Since 

m - 1 is a power of 2, (ms - 1)/(m - 1) is divisible by k and so M~(bS') = M~(b). 

In all, we can change b to bS' and completely satisfy the requirements of (a). 

Q.E.D.  

Consider now Theorem 4.8 applied to a Cq extension L / K  where K is a field. 

The point of 4.8 is that L / K  is determined by a solution of the equations 

N~(b)  = r ( z ) / z  ~ and t r (z)  = z, in K'  = K @rF(p) .  Conversely, such a solution 

determines an extension L/K.  As m - 1 = T, we can rewrite these equations as 

N,,(bz~,. ~)/2)= z ( z ) / z  where o ' ( z ) =  z. If c = bz ~'-l~n, then N~,~(c)= 1. Con- 

versely, if N~. , (c )=  1, then by Hilbert 's  theorem 90 there is a z such that 

N ~ ( c ) = r ( z ) / z  where z is o- fixed. Setting b = c z  ~  we have N ~ ( b ) =  

z ( z ) / z  ". All of which says that solving our original equation is almost equivalent 

to finding elements of K '  of norm 1. 
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In old work of Dickson, repeated in [2], elements of norm 1 were seen to be 

key elements in a description of K ' / K  crossed products. We are about  to derive, 

using essentially this observation, a very useful connection between Cq Galois 

extensions and K ' / K  crossed products. In particular, we will show that lifting 

one is equivalent to lifting the other. 

To be precise, let L / K  be a Cq Galois extension and let K, be the o- fixed 

subring of K ' .  The element z of Theorem 4.8 can be used to define a quaternion 

algebra A(K' /K, ,  o-, z )  which we will call D ( L / K ) .  The next lemma will show 

that D ( L / K )  is well defined. In this lemma, let DK be the set of isomorphism 

classes of quaternion algebras B/K, ,  split by K ' ,  and such that the z transform 

B T of B is isomorphic to B. 

LEMMA 4.9. The mapping L / K  ~ D ( L / K )  is well defined. Every element B 

of DK is of the form D ( L / K )  for some. Cq Galois extension L /K.  I f  B = 

A( K' /  K1, o-, z ) = D ( L / K ), then there is a b E ( K')* such that b, z describe L /K.  

PROOF, We assume the notation of Theorem 4.8 and its proof, with R and T 

replaced by K. Note first that 

A(K' /K~,o ' , z )~A(K ' /K~,o~ , z ' )  where z '  = a(or(a)) .  

Any other choice for a has the form or'w, where t is odd and w E (K')*.  Now 

a 'w(o ' (a 'w ) )  = (z ' ) 'N~(w),  and 

A(K' /K, ,  or, z ') ~ A(K' /K, ,  o', (z')'N~ (w )). 

Hence D ( L / K )  is well defined. 

Suppose B = A(K' /K, ,  o', z )  is in DK. Since B ~ ~- B, r ( z ) / z  = N~ (c) for some 

c E (K')*.  Setting b = cz"  ,,~/2, we have N~,(b)= r ( z ) / z  m. This b, z define a Cq 

extension L / K  such that D ( L / K ) = B .  To finish the lemma, we note that if 

z '  = N , , (w)z  for w E K~,  and if a E L '  is the canonical generator  as in the proof  

of 4.8, then a '  = aw -k is a canonical generator  of L '  viewed as K'{y q - aw-kq}, 

and 

cr(a') = a ' - 'z  '-k, r (a ' )  = a " ( b z ( w ) / w " )  -k. Q.E.D.  

To the quaternion algebras in DK one can associate a set of K ' / K  crossed 

products. More properly,  let AK be the set of isomorphism classes of crossed 

products A(K' /K,  H, c). To each A E AK we associate B ( A )  E DK which is just 

the centralizer of K1 in A. If B E DK, then the fact that B ~ ~ B implies that [B] 

is in the image of the Brauer  group of K and so that B = B ( A )  for some 

A e A r .  
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Though it is not needed for our arguments, the above maps can be summar- 

ized as follows. Recall, from [2], that A E AK can be described via u, c, c '  such 

that N,., (u)  = 1, N , ( u )  = ~(c)/c, and N . ( u )  = tr(c')/c'. If b, z describe L/K,  and 

D ( L / K )  = B ( A ) ,  then one of the u's describing A is the element bz ~"-1~2 of 

norm 1. 

Though the maps we have defined are not bijective, they are "equivalences" 

when it comes to lifting. 

THEOREM 4.10. Let T, M be a local F algebra, let K = T/M,  and set 

T' = T t~)FF(p). Denote by T1 the o-fixed subring of T'. Assume L / K is Cq Galois, 

A = A(K' /K,  H, c), and D ( L / K )  -- B ( A ) .  Then the following are equivalent: 

(a) There is a Cq Galois extension S I T  such that S @ r K  ~- L. 

(13) There is an A z u m a y a  algebra A ' = A( T' / T, H, c')  such that A ' @~- K = A. 

PROOF. Assuming (a), use 4.8 to describe S in terms of b', z ' E  (T')*. If b, 

z ~ K '  are the images of b', z ' ,  then b, z describe L/K.  Set B'  = A(T' /TI ,  tr, z'). 

Since z ( z ' ) / z '  is a t r  norm from T',  [B'] is the image of some [A"] E Br(T).  

[A" @ r K ]  may not equal [A ], but they must be equal after tensoring up to K~. 

Hence [ A " @ r K ] = [ A ] [ D ]  where D has the form A(K1/K,T,d) .  By 4.1, 

D = D ' @ r K  where D '  -- A(T~/T, ~., d'). The Brauer class [A"][D'] E Br(T)  is 

split by T'  and is a preimage of [A]. It follows that there is an algebra 

A ' =  A(T' /T ,  H, c') such that [A'] is a preimage of [A]. Since A '  and A have 

equal degrees, we have A ' @ r K  = A  and (b) is satisfied. 

Next assume (b), and set B '  to be the centralizer of T~ in A ' .  We can write 

B ' =  A(T'/T~, tr, z'). Modulo M, z '  has the form z N , ( w )  where b, z describe 

L/K.  Choosing w ' E  T'  to be a preimage of w, we can change z '  to z 'N~(w ' )  and 

so assume that z '  is a preimage of z. Now ~'(z')/z' = N~ (c') for some c'  E T'. Set 

b' = c 'z  '~1-m~/2, so that N~(b') = T(z ' ) /z  'm. Modulo M, b' and b have the same tr 

norm. Arguing exactly as before, we can assume b' is a preimage of b. We can 

now use b', z '  to define a C~ extension S / T  which satisfies (a). Q.E.D. 

To put it all together, 4.10 says that the lifting problem for each L / K  E ~g(Cq) 

is equivalent to the lifting problem for some A / K  E M ( K ' / K ) ,  and vice versa. 

When D ( L / K ) =  B(A) ,  and this equivalence holds, we write L / K  ~ A / K  and 

say that L / K  is equivalent to A / K .  

We next observe that this equivalence also applies to approximation prob- 

lems. Though we have decided not to emphasize approximation problems in this 

paper, the next result is necessary in order to show how the equivalence can also 

shed light on algebraic number fields. 
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THEOREM 4.1 1. Let K be a field with valuations v 1," �9 ", v,. Suppose L~/ K~ are 

C o Galois extensions and A, = A(K' @K K~/K~, H, c,) are such that L~/K~ 

A,/K~. Then the following are equivalent: 

(a) There is a Cq Galois extension L / K  such that L, ~- L @KK~ for all i. 

(b) There is an A = A ( K ' / K , H , c )  such that A @KK~ ~-A~. 

PROOF. Suppose (a) holds. Let L / K  be given by b, z @K' .  Set K~.I = 

KI @Kgi. By the same argument as in 4.10, we can find A " / K  @ sg (K ' /K)  such 

that A " @ K K ~ , ~ A ,  @K,K,.,. Again, there are C~ =A(gi,1]gi,'r, ci)such that 

[A~ ] = [A" @K K~ ] [C~ ]. By 4.1, there is a C = A(K1/K, r, c) such that C @K K~ ~- 

C~. Now [ A " @ K C ] = [ A ' ]  where A ' = A ( K ' / K , H , c ) .  We conclude that A 

satisfies (b). 

Conversely, assume (b). Suppose b~, z~ E K'~ define L~/K~. Arguing as in 4.10 

again, there are z"C=_K~ and b"fY_K' such that N~(b")=-c(z" ) /z""  and z " =  

z,N~ (c~) for c~ E K'~ = K' @K K~. By the last sentence of Lemma 4.9, there are b'~ 

such that the pairs b',, z" define L~/K~. Of course, b'~= b"o'(d~)/d~ for some 

d, ~ K'~. Form R '  = K'[x,  I h E H](1/ t )  where t is the product of the xh's and H 

acts on R '  in the usual way. Set R to be the invariant ring of H on R' .  As has 

been observed before, R has the form K[y~ , . . - ,  y,.] ( l / t) .  Use b"o(xl)/Xm and z" 

to define the Cq Galois extension S/R.  There are q~ :R---~K~ such that 

S @~, K~ ~ L~. Arguing exactly as in [23], p. 279, there is a q~ : R --~ K such that if 

L = S @~ K, then L satisfies (a). Q.E.D. 

Theorems 4.10 and 4.11 can be quite useful because sg (K ' /K)  can be easier to 

understand than ~(Cq). As a first example of this, we provide the converse to 

3.13. For this theorem, we will allow F to have characteristic 2. 

THEOREM 4.12. Let A be a finite abelian group of exponent 2'm where m is 

odd. Assume V is a finitely generated F[A  ] module such that A --> HomF (V, V) 

is injective. Then F§ A is retract rational over F if and only if either F has 

characteristic 2, or F(p(2 ' ) ) /F  is cyclic. 

PROOF. What has to be shown is that if F has characteristic not 2 and 

H = Gal(p (2 ') /F) is not cyclic, then ~ (A)  does not have the lifting property. But 

if it did, ~(Cq) would have the lifting property for q = 2' ([23], p. 265). This 

would imply by 4.10 that s~(F(p(q) /F)  had the lifting property. Hence by 3.18, 

71(M2(H)) = [0]. But then */(Jn)--[0] (2.7). This last statement is false for H 

noncyclic ([6], p. 183, mentioned in 2.6 above). Q.E.D. 

Let me briefly mention an alternate proof for 4.12. As argued, it is equivalent 
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to the question of whether r/(JH)=[0]. Of course, this last statement is 

independent of F and only depends on H. But arguing backwards, we can 

conclude that r / ( Jn)~  [0] from the counterexamples in [23] for the case F = Q 

(i.e., Wang's counterexample). 

Another consequence of 4.11 is a version of the full Grunwald-Wang 

Theorem for number fields. Theorem 4.11 reduces the approximation problem 

for Cq extensions to the same problem for abelian crossed products. Theorem 

4.2 answers this equation completely for these crossed products. The combina- 

tion, then, is a complete answer as to when local Cq extensions can be pulled 

back to global ones. There seems to be little point to explicitly stating this 

version in a separate result, but one aspect should be noticed. The behavior of a 

local Cq extension depends completely on the parameter we have labelled z. 

We will, however, draw two more limited consequences from the combination 

of 4.11 and 4.2, both well known facts in algebraic number theory. First, we can 

recover Wang's counterexample. If F = Q, p = p(q) for q a power of 2 bigger 

than or equal to 8, then O ( p ) @ o  Op is a field for the prime p = 2 and no other. It 

follows from 4.2 that if A/Q2 E M ( Q ( p ) / Q )  is a division algebra, then A cannot 

pull back to Q. Hence some C~ extension also cannot pull back. 

More generally, the next proposition will give necessary and sufficient 

conditions on a global field K so that all local-global approximation problems for 

Cq extensions are solvable. The proof, being an easy combination of 4.11 and 

4.2, is omitted. 

PROPOSITION 4.13. Suppose K is a global field. Then the following are 

equivalent: 

(a) For all primes v of K, K ( p ( q ) ) ~ r K ~  is not a field. 

(b) For all primes v l , "  ", vn of K and all Cq Galois extensions L~/K~, there is a 

Cq Galois extension L / K  such that L @rK~ ~- L,. 

In the beginning of this section, we mentioned that, over global fields, there 

was an interesting interaction between lifting questions and the induction 

operation on Galois extensions. In order to explore this, we first sort out the 

relationship between the induction operation and the equivalence of Theorem 

4.10. 

LEMMA 4.14. Let G = Cq be the cyclic group of order q = 2", viewed as a 

subgroup of G' = Cs where s = 2'q = s'q. Let p = p(q) and p' = p(s) where we 

assume p,s,= P. Suppose L I K  ~ ~g(C~), A / K  E ,d (K ' /K) ,  and L / K  - A / K .  Set 

L1 = Indg'(L/K).  Then L J K  ~ A J K  where AI E M ( F ( p ' ) @ s K / K )  and [A] = 

[A~] in the Brauer group. 
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PROOF. The automorphisms tr, r E H = Gal(F(p)/F) extend to automor-  

phisms ~r, r E H '  = Gai(F(p')/F) where (r(p') = p,-i and z(p ' )  = p,m. The proof 

of L e m m a  4.7 shows that tr, T generate H '  and that ~', m satisfies 4.7 with respect 

to s. 

Suppose b, z E K '  describe the Cq extension L/K. That  is, if L ' - - K ' • K L ,  

suppose L ' - K ' { y  q - a }  where the canonical e lement  a E L '  satisfies t r ( a ) =  

a-lz -k and r(a) = a"b k. Now set k " =  F(p ' )~FK and L " =  LI (~KK". Then 

L" has the form K"{y ~ - a ' } .  Also, as a K" algebra, l" is isomorphic to 

(L'(~K, K") ~ (L' ~ ,  K") ~ . . .  ~) (L'(~K, K") (s' times). 

Identifying all these expressions, we find we can write the canonical element,/3,  

of l" as 

/3 = (~,p,,~,...,(p,),' ' , ~ ) .  

We can compute that tr(/3)=/3-'z k and "r(/3)=/3mb -k. In other words, 

b, z ~ K" describe L1/K also. The lemma follows. Q.E.D.  

Let K be a global field, v~, . . - ,  v, some primes of K, and let L,/K~ be Cq 

Galois extensions. If G = Cq, G '  = C2q, and L'~ = Ind~'(L,/K~), then 4.2 and 4.11 

show that there always is a C2q Galois extension L'/K such that L', ~ L '  ~)K K~. 

As noted before, we are interested in whether this is also true for all fields K. 

Also, we are interested in the corresponding lifting problem. That  is, suppose T, 

M is a local F algebra, K = T/M, and L/K is Galois with group G = Cq. Does 

Ind~'(L/K) lift to T? 

In order to consider the lifting problem, we must ask when, in general, 

elements in M(K'/K) can be lifted. Let  F, p, tr and ~- be as always. Set F1 to be 

the tr fixed subfield of F(p), and set F2 to be the ~- fixed subfield. For any field 

K _D F, we set Kj = Fj (~vK. If A / K  E M(F(p)/F) is a tensor product  A1 (~ A2 

such that K~ is a maximal commutat ive subring of A~, we say that A decom- 

poses. Note that by 4.1, if A decomposes then it can be lifted over any local F 

algebra. A similar property holds for the approximation problem. 

It will be useful to have the following criteria for when A decomposes.  

LEMMA 4.15. (a) Suppose A / K  E ~(F(p)/F) has the property that [A]  is a 
product of [A, ] where each A~ is split by a cyclic extension L~ / K and L~ C K '. Then 
A decomposes. 

(b) Suppose A / K  E ~t(F(p)/F) and A ' /K  E ~I(K(p)/K) are such that [A]  = 

[A'] .  If A '  decomposes with respect to K(p)/K, or K(p)/K is cyclic, then A 
decomposes. 
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PROOF. We begin by proving (b). Suppose K't is the field direct summand of 

K~. Then K(p)  is the field direct summand of K~ @K K~. Assume, first of all, that 

K(p)/K is not cyclic. Then K(p)  ---- K] QKK~'. If A '/K decomposes with respect 

to K(p) /K,  then A '  = A ~ Q~ A ~' where K'~ is a maximal subfield of A '~. But if K'~ 

splits A't, then so does Kt. In other words, [A'~] = [A~] where A~ is a crossed 

product with respect to K,. We have that [A] = [AI] [A2]. Checking degrees, we 

get that A = AI QKA2 and A decomposes. 

Next, assume that K(p)/K is cyclic. H '  = Gal(K(p)/K) can be considered to 

be a subgroup of H = Gal(F(p)/F). If H '  _D (tr), then H '  = (o-) and K(p)  = K2. If 

H '  I"1 (~) = (1), then 4.6 shows that K(p)  is isomorphic to a subfield of K~. Hence 

either K~ or K2 splits A and clearly A decomposes. 

Turning to (a), let A and the At, Lt be as given. Set L't to be the field direct 

summand of Lt. Then L'~ splits At, L'~ C K(p) ,  and L't/K is cyclic. All in all, we 

may assume that F -- K. With this identification, then tr, ~- E H -- Gal(K(p)/K) 
have their usual meaning and the Lt C K(p)  are fields. By part (b), we may 

assume K(p)/K is not cyclic. Enlarging L~ if necessary, we may assume 

L~K~ = K(p) for j -- 1 or 2. In other words, L~ @rKj is a direct sum of copies of 

K(p). For simplicity, we take J -- 1, the other case being similar. If we write 

A, = A(Lt/K, rl, c), then 

At (~)x K, = A(Lt ~)K K,/K,, "O, c). 

Since Lt ( ~ r K l  is a direct sum of copies of K(p), 

[A, ~)KK,] = [A(K(p)/K1, o', c)] 

(this is an easy calculation) and so 

[A, ] = [A(K21K, o', c )] [A(K,/K, r, d)] for some d E K*.  

In other words, each [A,] = [A,.,][At.2] where Kj splits A,.j. Set [Bj] to be the 

product of all the [Ai.j]'s. Since K~ splits Bj, we can assume that Bj = 

A(Kj/K, n, cj) for the appropriate n E H. Also, [A] = [B1] [B2], and so, checking 

degrees, we have A ~ B~ ~)~ B2. Q.E.D. 

As mentioned before, Theorem 4.10 is useful because sometimes M(F(p)/F) 
is easier to deal with than ~(Cq). In particular, the machinery of the Brauer 

group can be used to show that certain A / K  E M(F(p)/F) decompose. The 

consequence is that we get lifting results for M(F(p)/F), and hence for ~(Cq). 

The next proposition contains some of these Brauer group results. 

PROPOSITION 4.16. Let F(lg )/ F be as above, and choose p ' such that p '2 = p. 
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(a) If K is any local or global field containing F, and A / K  E ~(F(p) /F) ,  then 
M2(A )/K E ~(F(p ' ) /F)  decomposes. 

(b) Now let K be an arbitrary field containing F. If for every A / K E  
sg(F(p)/F, M2(A )) decomposes as in (a), then the same is true J:or the rational 
function field K(t). 

PROOF. First note that in both (a) and (b), by using 4.15 (b), we may assume 

that K = F and thus that K(p) /K is not cyclic. Turning to (a), suppose K is a 

local field. Assume that 

tr, T C H = Gal( K (p )/ K ) 

are as usual, and extend these maps to 

,r, r @ H '  = Gal(K(p')/K) 

just as in the proof of 4.14. Write K(p') = K'~ (~ K; in the usual way. Note that 

[K(p)  : K]  -- [K'~ : K]. Since K is local, if A is split by K(p), it is split by K'~. So if 

A / K  E J ( K ( p ) / K ) ,  then 

M~.(A)=A'@KM2(K) where A'=A(K~,-c,c).  

Thus M2(A) decomposes. 

Next, suppose that, in (a), K is global. Let vl," �9 ", v, be the primes of K where 

A ramifies. Let K~ be the completion of K at v,, and K ( p ' ) =  K'IQrK'z the 

decomposition of K(p') as above. Set A~ = A @rK~ and K~,j = K'j@KK~. By the 

above paragraph, 

M2(A~) = A~.~ ~K, A,~_ where K~,j splits A~j. 

Let m,,,/m be the Hasse invariant of A~.j. For j = 1,2, set mj/m to be the sum of 

the m~.j/m over all i. Then (mz + m2)/m is in Z, since it is the sum of the Hasse 

invariants of A. Also, as A~.: is split by K,,2 which has degree 2 over K,, we have 

that m2/m has the form r2/2. By Tchebotarev density, there are infinitely many 

primes where K~ and K~ have local degree 2. In particular, there is such a v.+l 

not among the other v~'s. Let  [Aj] C Br(K)  have Hasse invariants m~,j/m at v~ 

and r2/2 at V,+l. Then fAt] is split by K~ and we can write M2(A)= AI @~A2. 
This finishes (a). 

To prove (b), we use the exact sequence (4.3), where P C Kit], )r Gp, Kp, etc. 

have the same meaning as in (4.3). Suppose A / K ( t ) E s g ( K ( p ) / K ) .  Set fe = 

,vp (A),  and let fp define the cyclic extension L~/K~. Since K(p)(t)splits A, Lp is 

a subfield of K(p)@KKp. That is, Lp C_ Kp(p). By using 4.6 it is not hard to see 
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that Lp C_ L'p@KKp where L'eC_ K(p)  and L'e/K is cyclic. Consider the cyclic 

algebra B = A(L'dK, rhg)where  7/ generates the Galois group of L'p/K and 

g E K[y]  generates the prime ideal P. If Q is any other prime, then by the 

discussion after (4.4), we can compute that ~o (B) = 1. On the other hand, if L 

is the field amalgamation of L~, and Kp, then Lp C_ Lg and x P ( B) =  f~, defines 

L ~Kp. It follows that XP (B ' ) - - fp  for some r. 

Performing the above construction for all P such that He (A)  ~ 1, we conclude 

that there are [A,], �9 �9 [A,,] such that each A~ is split by some L~/K where L~/K 

is cyclic, L~ C_ K(p),  and Xo ([A ] [A~] -~.- .  [A,,] -~) = 1 for all q. This implies that 

[A] = [ A , ] . . .  [Am][B] 

where [B] is in the image of Br(K) and is split by K(p)( t) .  If B = B'@KK(t ) ,  

then by our assumptions, M2(B') decomposes. By applying 4.15 we conclude that 

M2(A ) decomposes. Q.E.D. 

With 4.16 in hand, and using 4.10 and 4.11, we can now conclude some 

approximation and lifting properties for Cq extensions. We will limit ourselves to 

stating the lifting result because we believe it to be more natural. 

COROLLARY 4.17. Let K ~ F be a field of the form Kl(t~,. . . ,  t,) where K~ is a 

local or global field. Suppose T, M is a local F algebra and T / M  = K. If  L / K  is a 

Cq Galois extension, then L ~ L lifts to a C2~ Galois extnsion of T. 

In [24], the lifting results of [23] were used to prove surjectivity results for the 

map from the Brauer group of a local ring to its residue field. However, the 

results of [24] were limited by the impossibility of lifting all 2 power cyclic 

extensions. The next corollary is an addition to corollary 3.6 of [24]. We omit its 

proof because it is a straightforward combination of 4.17 and the methods of 

[24]. 

COROLLARY 4.18. Let T, M be a local F algebra. Set K = T/M. Assume 

K = K~(t) where K~ is a local or global field. Then the map Br(T)---> Br(K) is a 

surjection. 

Corollary 4.17 suggests that it would be worthwhile to ascertain whether this 

lifting property was special to the fields involved or was generally true. We next 

will observe that it is, in fact, special. The machinery of w will allow us to 

construct a Cq extension L / K  such that L 0 "  ' " � 9  L does not lift to any abelian 

extension. 

THEOREM 4.19. Suppose q, p are as above, and that F(p )/F is not cyclic. Then 
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there is a C, extension L / K  such that the following holds. Let A be any finite 

abelian group containing Cq, and set L'  = Ind~q(L /K).  There is a local F algebra 

T, M with T / M  = K such that L'  does not lift to T as an A-extension. 

PROOF. First off, elementary group theory shows that it suffices to consider 

A = C, where s = q2'. Theorem 4.10 and the calculation 4.14 show that it is 

equivalent to construct A / K E M ( F ( p ) / F ) s u c h  that no M , ( A ) l i f t s  to an 

element of M(F(p(s)) /F) .  The choice of A is the obvious one. Let 

H ' =  Gal(F(p(s)/F),  H = GaI(F(p)/F) 

and set N to be the Z[H]  module M2(H). Let K be the field O(F(p)/F,  N). Use 

the "generic" cocycle c of N = M2(H) to form the crossed product 

A = A(F(p) @ K/K,  H, c). 

We will show that A / K  is the desired algebra, for some T, M. Assume not. Then 

the proofs of 3.19 and 3.9 make it clear that the equivalent conditions of 3.19 

hold for F(p(s ) )  D F(p)  D F. Hence,  if f : M2(H')---~ M2(H) is the natural map of 

H '  modules, then r/(f) = [0]. This being false by 2.7, we are done. Q.E.D. 

Considering that the whole question started with an approximation property 

for global fields, it is worthwhile to state the approximation problem version of 

4.19, which follows. 

COROLLARY 4.20. Suppose q, p are as above, and that F(o )/ F is not cyclic. Let 

A be a finite abelian group, with A D_ Cq. Then there is a field K D F, a discrete 

valuation v on K with completion Kv, and a Cq extension L/Ko, such that 
Ind~q(L/K) does not pull back to K. 

PROOF (outline). Assume not. Then there is a relative approximation prop- 

erty for ~(Cq) and ~ ( G ) ,  where s -- 2'q and this has the obvious meaning. This 

immediately implies that if T, M is a discrete valuation F algebra, and K = T/M, 

then for any Cq extension L/K,  some L 0 "  " �9 (~ L would lift to a Cs extension 

of T. By the remark after 3.9, this implies the lifting for all T, M;  which 

contradicts 4.19. Q.E.D. 

w Lifting crossed products 

Let G be a finite group, T, M a local F algebra, and S / T  a G-Galois  

extension. In this section we will look at the question of whether 

Br(S/T)---~ Br ( (S /MS) / (T /M))  is surjective. Note how a specific question of this 
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sort arose in w and how a partial answer was used to reach conclusions about 

cyclic Galois extensions. Our arguments have two highlights. First, we show how 

our question is related to older questions of whether algebras can be expressed 

in terms of cyclic algebras. Second, let p be a prime and let Z(F,p, r) be the 

center of the generic division algebra UD(F,p,  r). Then Z(F,p,r) /F is retract 

rational. 

To begin with, we must consider the corestriction map. We will use this map 

only in a limited context, so we will not give the most general definition. Suppose 

R is the semilocal F algebra and T/R is a G-Galois extension. There is an 

isomorphism jT/R :H2(G, T*)---~Br(T/R) where j is defined via the crossed 

product construction. Suppose H C G is a subgroup and S is the fixed ring of H 

in T. S is again semilocal. Cohomologically, one can define a transfer map 

Tr~m :H2(H, T*)--~H2(G, T*) (e.g. [4], p. 104). Using the isomorphisms jT/R 

and ills, we have the corestriction map Cors/R :Br(T/S)--~ Br(T/R).  Note that 

the map we have defined is a special case of the construction in [15]. In 

particular, we can conclude that Corsm does not depend on G or T but only on 

S/R. 
From the basic properties of the transfer map (e.g. [4], p. 105), we conclude 

that if [A ] E Br(R),  then Cors/R (S ~R A)  = [A ]n where n -- [G : H] .  Also, 

since the transfer map is a natural transformation, we conclude that if 

: R ~ R '  is an F map of commutative F algebras, then 

(5.1) 

Br(T/S) , Br(T'/S') 
Cor I ~ Cor 

Br(T/R) , B r ( T ' / R ' )  

commutes, where T' --- T Q~ R '  and S' = S Q~ R '. Finally, if S ~ S' _~ R then 

Cors/R = Cors,m o Cors/s,. 
Turning to lifting questions, we have already seen that cyclic algebras behave 

well. Using the corestriction, we observe in the next proposition that this 

generalizes to groups with cyclic Sylow subgroups. 

PROPOSITION 5.2. Let T, M be a local F algebra. Set K = T / M. Suppose S / T is 
a G-Galois extension and L = S ~ r K .  Assume A = A(L/K, G, c) has exponent 

a power, p', o[ a prime p. Further, assume that G has a cyclic p-Sylow subgroup o[ 

order p s. then there is an Azumaya algebra B = A( S / T, G, c ') such that B ~ K ~- 

A and B has exponent dividing pS. 

PROOF. Let  P C G be a p-Sylow subgroup. Set m = [G : P]  and choose m'  
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such that m'm==-l(pr). Let A'=A(L/K,G,d)  be such that [A']=[A] m'. 
Denote  by L ' ,  S' the fixed ring of P in L and S respectively. Note that we may 

assume L ' =  S'/MS'. We set A~ to be the centralizer of L '  in A' .  Since P is 

cyclic, A1 =A(L/L',cr, b) where o- generates P and b E(L ' )* .  Since S' is 

semilocal, there is a b'E(S')* such that b' is a preimage of b. Set B~ = 

A( S / S', or, b '). Since Cors,/R ([B1]) E Br( S / T), 

Cors,/R ([B~]) = [BI where B = A(S/T, G, d'). 

Using (5.1), [B | = Cor , , /K( [A '@rL ' ] )  = [A'I" = [A]. But A, B have 

equal degrees, so B @ r K  -~ A. Finally, [B] is the image under the corestriction 

of an Azumaya algebra class with a representative of degree pS, so [B ] has order 

dividing p ' ,  Q.E.D. 

Now, as an immediate corollary of 5.2 we can prove the following. 

COROLLARY 5.3. Let Z(F, p, r) be the center of the generic division algebra 
UD(F, p, r) of degree p, a prime. Then Z(F, p, r)/F is retract rational. 

PROOF. By 3.11, we must show that Azumaya algebras of degree p have the 

lifting property. So let T, M be a local F algebra, set K = T/M, and let A / K  be 

a central simple algebra of degree p. If A = Mp (K), clearly A lifts. So we may 

assume A is a division algebra. Choose L ' C A  to be a maximal separable 

subfield, so L'/K has degree p. Also choose Lt D L ' D  K such that L~/K is 

Galois with group G C Sp = G'.  Set L = Ind~'(L~/K). L splits A so [A] = [A'] 

where A '  = A(L/K, Sp, c). 
Extensions with group Sp have the lifting property. This can be seen in many 

ways, the most convenient is to note that if V is the standard degree p 

permutation representation of F[Sp] and F '  is the fixed field of Sp on F+(V), 
then F'/F is rational. Thus we can apply 3.11. 

Using this, we choose an Sp Galois extension S/T such that S @TK ~ L. By 

5.2, there is a B' = A(S/T, Sp, c') such that B'@rK ~ A', and B '  has exponent  

p. S~ has a subgroup, H, such that [Sp : H]  = p. Let  S' be the fixed ring of H in S. 

S' splits B '  because, if r is the exponent  of B'@~S', then r divides (p - 1)! the 

degree of S/S'. But r divides p so r = 1. Hence ([7], p. 64) [B'] = [B] where 

S'C_B is maximal commutative. In particular, B/T  has degree p. Since 

[B @TK] = [A],  B @TK ~ A. Q.E.D. 

We will end this paper by presenting a converse for 5.2. We do this by looking 

at concrete semilocal rings, and examining when algebras lift. So let K be a field, 

and L/K a G-Galois  extension. Assume P1,'" ",P,, C K[t] are maximal ideals 
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and P = P I " '  P,,. Set R to be the localization K[t]v, S to be L QKR, Kp to be 

K[t]/P, and Lp -- L @KKP. Note that [ A ] E  Br(K(t)) is in the image of Br(R) if 

and only if Xo([A] = 1 for all Q = Pj. Also, R is Dedekind so we have the 

following exact sequence ([13]): 

m 

0 , Br(R)---->Br(K(t))--o G x(Gj)--->O 
i=1 

where Gj is the absolute Gaiois group of K[t]/Pj. We will identify Br(R ) with its 

image in Br(K(t)). 

PROPOSmON 5.4. [A ] E Br(Lv/Kp) is in the image of Br(S/R) if and only if 
[A] = [ B I [ B I ] ' ' '  [B~I where: 

(i) [B] is in the image of Br(L/K). 
(ii) Each [Bi] has the form CorL,/r([A(L"/L',cr, c)]) where HC_G is a 

subgroup, L ' is the fixed ring of H in L, and L " is the fixed ring of H' C_ H such that 
H /H '  is generated by tr. 

PROOF. Suppose [A] is the image of [A ']EBr(S/R) .  We will use the 

comments and notation of (4.3). Since A '  is Azumaya over R, Xo (A') = 1 for all 
Q - - P 1 , ' " , P m .  Let Q I , " ' , Q s  be the primes such that A '  has nontrivial 

characters at Q,. Set f~ to be the character of A '  at Q,, and set K~ = K[t]/Q~. The 

character f~ defines an extension L,/K, which is cyclic. Since S splits A ' ,  

L, _C L (~)r K,. 
According to [9], p. 51, there is a cyclic algebra A'~ = A(L, (t)/K~ (t), tr, c) such 

that Xo (Corr,,)/rt,)([A'[]))= f~ if Q = Q~ and = 1 otherwise. Note that from 

the argument in [9], one can see that c is in K~[t], and is, in fact, a product 

of the generators of the primes into which Q~ splits in K~[t]. Set [A]] to be 

CorK,u)/Ku)([A ';]). 
Since Xo ([A ~]) = 1 for any O = Pj, [A, ] can be considered to be in Br(R ). We 

also claim that A~ is split by S. Set K'~ = K~ tq L. There is a cyclic extension L~/K'~ 
such that L'~ C L and L'~r ' ,  K~ ~ L~. An exercise in cohomology shows that 

Corr, u)/~c~u~([A'~]) has the form [A(L'~(I)/K'(t), or, N(c))] where N is the norm of 

K~ (t)/K'~(t). Since L'~ C_ L, L(t) splits 

[A ',] = CorK;u)/m,)(Corr.lo/r~t,l([A'I])). 

Since S CL( t )  is Dedekind, Br(S)--~Br(L(t)) is injective so S splits [A'~] 

considered as an element of Br(R). 
Taken all together, [A"] = [A'][AI]-~.. .  [ A ' ]  -~ has trivial character at all 

primes and so is in the image of Br(K). Now we go modulo P. The image of A"  is 
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the B of the proposition. The naturality of the corestriction shows that the image 

of [A'~] is CorK,.| o~,d)]) where d is the image of 

N(c) under the natural map K'~ (~)K R --* K'i (~)KKP. Note that d is a unit by our 

description of c. If H = Gal(L'dK'i) and H '  = GaI(L/L'i), and if [B,] is the image 

of [A'~]-', then [B~] satisfies 5.4(ii). 

To prove the converse, note that an argument like that of 5.3 shows that the 

[Bi]'s lift to Br(S/R) and, of course, [B] lifts because there is a map 

Br(K)---~ Br(R ). Q.E.D. 

With this calculation in hand, we can now prove: 

THEOREM 5.5. If F is a field and L/F is G- Galois, then s4 ( L / F) has the lifting 
property if and only if every Sylow subgroup of G is cyclic. 

PROOF. Set M = M2(G), K = Q(L/F,M), and L1 = L  @vK. If c is the 

"generic"  cocycle of M, we form A -- A(LdK, G, c). Our first claim is that A has 

exponent  n = [L : F]. But if not, there is a O~ r E L[M] ~ such that if U is the 

group (L[M](1/r))*/L*, then e, considered as a cocycle of U, has exponent  

m < n. There is an exact sequence 

O--~ M--* U-* P--* O 

where P is a permutation module. Since H~(G, P) = (0), the 

mapH'-(G,M)--*H2(G, U) is an injection. Hence, as a cocycle of M, c has 

exponent m. However,  an exercise in cohomology shows that H'-(G, M) = Z/nZ, 
with the image of c forming a generator. This contradiction proves the claim. 

With A / K  as given, choose P C  K[t] such that K [ t ] / P - - K O K .  Set R = 

K[t]p. Let A'/(K ~ K) be the algebra A G M, (K). If sC(L/F) has the lifting 

property, then we observed in w that ~(L /F)  has the lifting property over 

semilocal rings. Hence [A']  is in the image of Br((L (~vR)/R). By 5.4, 

[ A I = [ A , I ' " [ A ~ . ]  

where each [A,] has the form Corw/~ ([A(L'/K', or, c)]), with L'C_ L @FK and 

with L'/K' being cyclic. Clearly, we may assume that all the L'/K' have prime 

power degree. Let  Pin  and suppose p '  is the highest power of p dividing n. 

Since A has exponent  n, some A~ must have exponent p r, and the corresponding 

L'/K' then must have degree pr. In other words, there must be subgroups 

H '  <3 H C G such that H/H' is cyclic of order p'. By elementary group theory, G 

has a cyclic p Sylow subgroup. As the converse follows easily from 5.2, we are 

done. Q.E.D. 
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REMARK. The proof of 5.5 can be modified to yield a converse to one of the 

basic observations of w Namely, suppose F, p = p(q),  p' = p(s) are as in 4.14. If 

every A / K  E sg(F(p)/F) has the property that M,(A) (for the appropriate t) 

lifts to an element of sg(F(p')/F), then every such M,(A)Esg(F(p')/F) 
decomposes.  
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