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RETRACT RATIONAL FIELDS AND
CYCLIC GALOIS EXTENSIONS

BY
DAVID J. SALTMAN'

ABSTRACT

In [23], this author began a study of so-called lifting and approximation
problems for Galois extensions. One primary point was the connection between
these problems and Noether’s problem. In [24], a similar sort of study was
begun for central simple algebras, with a connection to the center of generic
matrices. In [25], the notion of retract rational field extension was defined, and a
connection with lifting questions was claimed, which was used to complete the
results in [23] and [24] about Noether’s problem and generic matrices. In this
paper we, first of all, set up a language which can be used to discuss lifting
problems for very general “linear structures’. Retract rational extensions are
defined, and proofs of their basic properties are supplied, including their
connection with lifting. We also determine when the function fields of algebraic
tori are retract rational, and use this to further study Noether’s problem and
cyclic 2-power Galois extensions. Finally, we use the connection with lifting to
show that if p is a prime, then the center of the p degree generic division algebra
is retract rational over the ground field.

Introduction

In [23], a series of results were proved consisting of statements that certain
Galois extensions could be lifted over local rings, or could be pulled back from
complete fields to dense subfields (the so-called approximation problem). This
paper is a sequel to [23], in that here we raise and sometimes answer questions
that arose out of [23].

One consequence of the methods of [23] was that a large “chunk” of the
Grunwald-Wang theorem of algebraic number theory was, in fact, a special case
of a result that applies to all fields (see also [17] and [26]; note that [17] predates
[23])). The research that led up to this paper began by taking a closer look at the
Grunwald-Wang Th¢orem and asking if “more” of it could be generalized to all
fields. For example, let us consider Wang’s counterexample. The unramified

' The author is grateful for NSF support under grant #MCS79-04473.
Received September 1, 1982 and in revised form November 1, 1983

165



166 D. J. SALTMAN Isr. J. Math.

cyclic extension L/Q; of degree 8 does not pull back to a cyclic extension of Q.
But notice the following: L = Q,(p) where p is a primitive 17th root of one. And
Q(p)/Q is cyclic of degree 16. What this means is that L €5 L can be pulled back
to a cyclic extension of Q of degree 16.

It turns out that this phenomenon is more general. It happens for all local and
global fields and all 2 power cyclic groups (we reprove this). What’s more, we can
generalize the corresponding lifting result to purely transcendental extensions of
local or global fields. But we also show that this phenomenon is not completely
general; we construct a counterexample.

Several pieces of mathematical machinary are used to show the above results.
One of them is an equivalence, for lifting and approximation questions, between
2 power cyclic Galois extensions and abelian crossed products. This equivalence
is used to give a relatively elementary proof of a full version of the
Grunwald-Wang theorem. In particular, Wang’s counterexample is given
another proof.

Going back to [23], we note that a relationship was traced between Noether’s
Problem and lifting problems. This relationship was one way. In order to give a
converse, the notion of retract rational field extensions was introduced in [25].
Briefly, K/F is retract rational if K is the quotient field of S and S is a retraction
of a localized polynomial ring F[x,, -, x.](1/r). The idea is that a retract
rational extension is aimost rational (i.e., purely transcendental). In [25], some
properties of these extensions were sketched. A major goal of this paper is to
give a fuller treatment of these extensions.

The point about retract rational field extensions is that they are naturally
associated with lifting questions. In [25] this was claimed for Galois extensions
and for central simple algebras. But it is true more generally, and one proof can
show it all. In order to do this, we must use the appropriate general notion, that
of linear structures. With this, and some other definitions, we can present our
results in very general terms (and prove things once, instead of three times).

Much previous work on Noether’s problem has used the function fields of
algebraic tori. This culminates in the treatment of [6], where questions about the
stable isomorphisms of these function fields are reduced to questions about
integral representations of finite groups. In this paper, we ask parallel questions
about these function fields and retract rationality. We can say precisely when
these function fields are retract rational. In addition, we define a functor on the
integral representations which is shown to be related to relative lifting problems.
It is this machinery that allows us to present the counterexample in the lifting of
2 power cyclic Galois extensions mentioned above.
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Throughout this paper, we will attempt to illustrate that the notion of retract
rationality is a natural one. For example, we will prove the following result. Let
A be a finite abelian group of exponent 2'm for m odd. If F is a field of
characteristic #2, L is the field F(x, Ig € A), and p is a primitive 2" root of
one, then L*/F is retract rational if and only if F(p)/F is a cyclic extension.
Compare this with the corresponding characterization of when L*/F is rational
([16]). We can also extend our results to include all quotient fields of symmetric
algebras of F[A] modules which are faithful as A modules.

We spend a bit of time in this paper looking at the question of lifting crossed
product algebras. As an outgrowth of that and our general theory, we prove the
following: Let Z(F, n, r) be the center of the generic division algebra UD(F, n, r)
(e.g., [14], p. 92). If n =p is a prime, then Z(F,p,r)/F is retract rational.
Compare this with [10], [11], and [20], where rationality is proved for n =2,3,4.

In the previous papers [23], [24], and [25], both lifting problems and
approximation problems are treated. Except for parts of §4, we will place the
main emphasis on lifting problems. We believe the lifting questions to be more
fundamental. The reader should note that these two sorts of questions are
closely linked. In fact, using the argument of 4.20, a sort of equivalence could be
proved between them. To do so, however, would require even more new
terminology and does not seem, now, worth the effort.

In §1 we introduce the general terminology of linear structures, and the
associated other definitions, §2 has the results about integral representations
which we require, §3 is about retract rational fields and §4 is about cyclic Galois
extensions. Also in §4 is the result about L“* mentioned above. Finally, §5 has
the results about crossed products including the result about Z(F,p,r).

Let us specify some terminology and notation. In this whole paper, F will be
an infinite field, the “base” field. All rings will be F algebras. The term F map
will denote an F algebra homomorphism. If G is a group, the symbol F{G] will
mean the group algebra, whereas if V is an F vector space, F.[ V] will mean the
symmetric algebra. A local F algebra will always be presented as T, M where
M C T is the maximal ideal. By assumption, local F algebras will be commuta-
tive. If V is an F vector space, [ V : F] is the dimension of V over F. We will fix
an algebraic closure, F, of F, and will denote by p(n) a primitive nth root of one
in F, if meaningful. For any field K, K (a) will denote the field generated by K
and a. The term “‘valuation on K" will refer to a real valued valuation. If K is a
global field, we will (imprecisely) use the term valuation and prime interchange-
ably.

By a Galois extension we will mean a Galois extension of commutative rings
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as in [7]. In particular, if K is a field and L/K is Galois, then L need not be a
field (but L is a direct sum of fields). A Galois extension with group G will be
abbreviated as a G-Galois extension. Note that such an extension is a ring
extension S/R and a specified action of G on S. All isomorphisms of G-Galois
extensions are assumed to preserve the G action.

We will make considerable use of the Brauer group, Br(R), of the commuta-
tive ring R, especially in the case R is a field. Of course, Br(R) consists of
equivalence classes of Azumaya algebras. If A/R is Azumaya (this means R is
the center of A), we will denote by [A] the Brauer equivalence class of A. If
S DR, Br(S/R) will denote the subgroup of Br(R) of all classes split by S. If
A/R is Azumaya and A has constant rank as an R module, then this rank is a
square. The square root of this rank is called the degree of A. Though we assume
the reader is familiar with the Brauer group, we recall one important fact. If
A/L, B/L are Azumaya, L is a field, [A] =[B], and A, B have equal degrees,
then A = B as L algebras. Finally, if A is Azumaya, the exponent of A will be
the order of [A] in the Brauer group. We refer the reader to [1], [7], and [18] for
the basic information about the Brauer group we will require.

Suppose S/R is G-Galois and S* is the unit group of S. If c(o, 7)ES* isa G
2-cocycle, we can form the crossed product A(S/R, G, c¢), which is Azumaya over
R (e.g., [7], p. 121). If G is cyclic, the cocycle ¢ is determined (up to coboundary)
by a choice of generator o € G and an element d € R*. The corresponding
cyclic algebra will be denoted by A(S/R, o, d).

All modules in this paper will be left modules. If R, S are commutative rings,
if ¢ : R— S is a ring homomorphism, and if M is an R module, then M.,S
will denote the tensor product where S is an R module via ¢. If f: N— M,
g : N— M’ are module homomorphisms (over some ring) we will denote the
pushout by M @y M’. In the dual situation, M Xy M’ will denote the pullback.
In general, all maps which have, for one reason or another, unique extensions
will have the same symbol used to designate the extension. And truly finally, if
is a domain, we will use g(S) to denote the field of fractions of S.

§1. General nonsense

A major theme of this paper is the study of whether certain algebraic
structures can be lifted over local rings. The purpose of this section is to develop
a language with which we can discuss all of our lifting problems simultaneously.
Of course, one can do this in many ways. Our choice here is a bit arbitrary, but it
SErves our purposes.
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In the general definitions that will follow, it will be useful to keep in mind two
examples of algebraic structures which we ultimately will deal with. They are
Azumaya algebras and G-Galois extensions, for G a finite group (fixed). These
examples have two important characteristics. First, they are both defined with
respect to a base ring, either the center of the algebras or the fixed ring of the
Galois group. Second, for both structures it makes sense to talk about base
change via the tensor product. These two characteristics motivate our general
definitions.

Let R be a commutative ring and M an R module. We set M= R and we
set M to be the r-fold tensor product of M over R. We define a linear structure
to be a tuple of the form

M :<R,M,f|," »fr>

where R, M are as above and f, : M*’— M’ are R module maps. We will say
such an  is over R and will occasionally write #{/R. The type of M is the
sequence (si. 1), -+, (s, &.). It is clear that R algebras can be thought of as linear
structures over R. If G is a finite group, then G-Galois extensions S/R can be
thought of as linear structures over R if we include among the f’s the maps
o:8— S for each ¢ € G. Finally, R modules with multilinear forms are also
linear structures over R. In the rest of this paper, algebraic structures will be
described as linear structures without explicitly stating how the identification is
made.

The definition of a homomorphism of linear structures is the obvious one.
That is, if

M=<R1M,fl7“'vfr> and N=(53N3g17.“’gr>

have the same type, we can define a homomorphism W : # — N to be a pair
(¢, ¥) where ¢ : R — S is a ring homomorphism, ¢ : M — N is a ¢-semilinear,
and (¢, ¢ ) preserves the f; and g as follows: Define ¢ to be ¢, and * to be the
induced map M7 —> N If fi: M- M® (and so g :N®— N®), then we
require that g oy = ¢“of,. In this way the class of all linear structures of a
fixed type form a catagory in the usual way. An isomorphism
(o, ¢): M/R — NS will be an invertible morphism which is R linear. That is,
we insist that $ = R, that ¢ is the identity, and that ' : ¥ — M exists.

In the opposite direction, if M ={(R,M, f,---,f,) is a linear structure and
¢ : R— S is a ring homomorphism (and $ is commutative), we can define

MRS =S MRS iR, 1),
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where (M ®,S)” is identified with M™®.S and so [ QI:
MR S>> (MR S)" is well defined. Of course, # &, S is a linear structure
of the same type as 4 and the induced map M — M Q) S is a homomorphism.

In studying lifting problems, we will consider classes of structures over a fixed
field as follows. Let F be a field. An F structure is a linear structure #{/R such
that F C R. The class of all F structures of a fixed type form a category where we
insist that all homomorphisms be F linear. An F-class € is a class of F structures
closed under (F linear) isomorphisms such that it has two additional properties.
First, if #/R €€, and ¢ : R— S is an F map with S commutative, then
M Q.S € 6. Secondly, if #/R E € and R'C R is a subring, then there is a
M"/R" € € such that R'C R"C R; R" is finitely generated as a ring over R/,
and 4’ Qr- R = M. We are interested in several examples of F classes. If n isa
positive integer, we denote by & (F, n) the F class of all Azumaya algebras A/R
where A is of degree n. Let G be a finite group. We denote by €(G) the F class
of all G-Galois extensions S/R where F C R. That both of these examples are F
classes can be shown using [18], p. 35, [7], p. 85, and [22], p. 528. Later on in this
paper we will describe other examples.

In [23] and [24], this author considered questions of the following sort. If C/K
was a Galois extension, or an Azumaya algebra, and T was a local ring with
residue field K, did C lift to a similar structure over T? In some cases, an
affirmative answer to this question was obtained via the construction of a generic
Galois extension or a pure generic algebra. Both this question, and this approach
to an answer, are completely general and can be phrased in terms of F classes,
which we now do. We say an F class € has the lifting property if whenever T, M
is a local F algebra and # € € is over T/M, then there is a #'/ T € € such that
M Qr T/M = M, the isomorphism being T/M linear, by definition. #/R € € is
a representing object for € if R is an affine F algebra and if whenever #//K € €
with K a field, then there is an F map ¢ : R = K such that /' = #{ &, K. In this
circumstance we say that #/K is a specialization of #/R and that ¢ realizes
N/K. Finally, a generic object #£/R € € is a representing object such that R has
the form F[x,, - -, x.](1/r); that is, such that R is a localized polynomial ring.

In both the case of Galois extensions and of Azumaya algebras, there is a
natural representing object. For Galois extensions, we (roughly speaking) refer
to Noether’s construction ([23], p. 274 for example). For Azumaya algebras, we
refer to the generic division algebra UD(F, n, r). Considering, for example, this
later case, the situation is the following. We set R (F, n,r) C UD(F, n, r) to be the
ring of generic n X n matrices. If C(F, n,r) is the center of R(F, n, r), then there
is a 0#s € C(F,n,r) such that R(F,n,r)(1/s)/C(F,n,r)(1/s) is Azumaya of
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degree n. If A/K is any central simple algebra of degree n, and 0#t €
C(F, n,r), then there is a ¢ : C(F, n,r)(1/st)— K such that

R(F,n,r)(1/st)®.K = A.

In other words, R(F, n,r)(1/s)/C(F, n,r){1/s) is not only a representing object,
but is a densely representing object in the following sense. A representing object
M/R € € is called densely representing if R is a domain and if for any
0# s €R, then A ®rR(1/s) is a representing object.

In [23] for Galois extensions, and in {24] for Azumaya algebras, a relationship
was traced between generic objects and the lifting property. This relationship is
quite general, and is stated in the next result. We will omit the proof because it is
a trivial generalization of the argument of [23}], p. 275.

ProposiTiON 1.1. Let € be an F-class,

(2) if € has a generic object, then € has the lifting property;

(b) if € has a densely representing object, and € has the lifting property, then €
has a generic object.

Note that, arguing as in [23], p. 256, the existence of a generic object implies
the more general lifting property over semilocal F algebras. Thus if € has a
densely representing object, the lifting property for € implies the lifting
property for € over semilocal F algebras.

Let us return to the F class, &/(F,n), of Azumaya algebras and the ring
R(F,n,r). This ring is sort of a free object for s¢(F, n), but is not, itself, in
A(F, n). The situation occurs again, so we introduce some terminology to cover
it. Let € be an F class, 4, N € €. A surjection (¢, ¢): #M — N is a morphism
such that ¢, ¢ are surjections as set maps. Given this, it is clear how to define a
projective. If ? is an F structure of the same type as those in €, then 2 is a
projective object for € if whenever A: ? —> N and ¥: # — N are morphisms,
where V¥ is a surjection and #, & € €, then there is a A": ? — M such that
A =V¥oA’. We emphasize that, as with R(F, n, r), we do not ask that ? be in €.
We say that 2 is a projective object in € if # € €.

We cite a few examples of projective objects, beginning with the easy fact that
R(F,n,r)/C(F,n,r) is a projective object for &/(F, n). As another example, let
%, be the F class of all commutative F algebras R (each R is over itself). Then
R =F|x,, -, x.]is a projective object in €,. We will give a third example in the
next lemma.

LeEMMA 1.2. Let G be a finite group and V an F[G] module such that
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G — Endx(V) is injective. Then if F.[V] is the symmetric algebra, we have that
F.[V)/F.[V]° is a projective object for €(G), the F class of G-Galois extensions.

ProoOF. Suppose S/R and S'/R’ are G-Galois extensions of commutative F
algebras and ¢ :S— S’ is a G preserving F map surjection such that the
restriction of ¢ to R is onto R'. Let ¢ : F,[V]— S’ be any G preserving F map.
By [5], p. 13, (S")" is a projective R'[G] module, and so a projective F{G]
module. Hence there is a F[G] module map & : $’— S such that o § is the
identity on S’'. Restricting 8 ° ¢ to V gives an F[G] module map u : V— S. This
map u induces a G preserving F algebra map u”: F.[V]— S. Now ¢ = o p”
because this relation holds on V. Q.ED.

Remark. I thank F. DeMeyer for this argument.

Though R(F, n,r) is not Azumaya, we know that R(F, n,r)(1/s) is Azumaya
for some 0# s € C(F, n,r). This new algebra is no longer projective, but it is
almost projective in the following sense. Define a morphism (¢, ¢): M/R — N'/S
to be local if ¢ '(S*) = R*. That is, if the preimage of every unit in S is a unit in
R. If € is a category of F structures, then P € € is a local projective if for all
local surjections ¥: . — N, and all A: ? — W, there is a A': ? — M such that
A =¥o A’ The use of the term local is, perhaps, justified by the following result.

THEOREM 1.3. (a) Let € be an F class, and P/R € € a local projective. If
0#sE€R, then P QrR(1/s)/R(1/s)E € is a local projective.

(b) S =F|[x,,--+,x.](1/s) is a local projective for the class of all commutative F
algebras.

(c) Let G be a finite group, and V a F[G] module as in 1.2. Suppose
S =F.[V]}(1/s) where 0% s € Sis G fixed, and R = S°. If S/R is G-Galois, then
S/R is a local projective for €(G), the F class of G-Galois extensions.

(d) Let n be a positive integer and set A’ = R(F, n,r). If s € A’ is in the center,
and A'(1/s)= A is Azumaya over its center C, then A /C is a local projective for
s (n), the F class of Azumaya algebras of degree n.

ProoF. (a) Let #M/R and N/S be any objects, and let 0 #s € R. Then
Hom(/# @x R(1/s), N/S) can be identified with the subset of all (¢,¥)€E
Hom(/4/R, X/S) such that ¢(s) € S is a unit. With this observation (a) is easy.
Using (a), parts (b), (c) and (d) are trivial. Q.E.D.

We end this section with just a little bit more terminology. Suppose € and €’
are both F classes of the same type and 4 C €¢'. We say that (6, €’) have the
lifting property if for every local F algebra T, M and every #£ € € over T/M
there is a M'/T € €' such that M' @+ TIM = M.
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§2. Modules over a group

In later sections, we will be studying the function fields of algebraic tori,
written Q (L /K, M). They will be defined in §3, but note now that L /K hereis a
G-Galois extension, K is a field, and M is a Z[G] module which is finitely
generated free as an abelian group. In [27], [16], [8], [29] and [6]. it was shown
that Q(L/K, M) can be studied via the G module properties of M. In this paper
we will ask new questions about the Q(L/K, M), and answer them by using
some results on G modules. This section will deal exclusively with the necessary
G module material.

In what follows, we will assume the reader is familiar with the basic reference
[6], especially Section One. We will briefly review the definitions and some
results. From now on all Z[G] modules (also called G modules) will be assumed
to be finitely generated free as abelian groups, unless stated otherwise. A
permutation module is a Z[G] module P such that P has a basis which is
permuted by G. If H C G is any subgroup, we can form the G module Z[G/H]
which has as a basis the cosets oH and upon which G acts in the obvious way.
Any permutation module is a direct sum of the Z[G/H]’s for different H’s. In
what follows, the cohomology groups H"(G, M) will always be Tate cohomol-
ogy groups and so will be defined for all integers n.

An invertible module is a direct summand of a permutation module. A flasque
module is a G module M such that H™'(H, M) = 0 for all subgroups H C G. If E
is a flasque module, and 0—I— M — E —0 is an exact sequence where [ is
invertible, then this exact sequence splits. It is shown in [6] that every G module
M can be fitted into an exact sequence 0—>M — P —F —(0 where P is a
permutation module and E is a flasque module. Such a sequence is called a

flasque resolution of M. For easy reference, we will state formally a result from
[6], p. 181.

LEmMA 2.1. Let 0> M — P— E —0 be a flasque resolution and f : M — Q
a G-map where Q is a permutation module. Then f extends to a G mapf': P— Q.

In [6], two modules M, M’ were defined to be similar if M P =M’ P’ for
P, P’ permutation modules. For our purposes, it is useful to define a slightly
weaker equivalence relation. We will say that M, M’ are equivalent if M P I =
M @I for invertible G modules I, I'. We denote by [M] the equivalence class
of M under this equivalence relation. It was shown in [6] that if

0-M—->P->E—->(0 and 0>-M—->P >E' -0

are flasque resolutions, then E is similar to E'. Thus, if p(M) is defined, as in [6],
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to be the similarity class of E, p is well defined. We will modify this definition
and set n(M) =[E]. Of course, 7 is also well defined. A large part of this section
will be devoted to defining 7 on maps between G modules. The idea is that 7 is
almost a functor. For technical reasons, we will define a genuine functor n’
associated to . It is the “quasi-functorial” properties of n that will allow us to
settle some relative lifting problems.

Let M, M' be two G modules. Two G maps f,f':M— M’ are called
equivalent if f — f’ factors through a permutation module. That is, if there is a
permutation module P and G maps g:M—P and h:P— M’ such that
hog =f—f'. We note without proof some easy facts about this relation. Let
g:M"—>M and h: M'—> M* be G maps. If f is equivalent to 0 then so is fog
and hof If f', f : M — M’ are both equivalent to zero thenso is f + f' and — f. If
Idy : M — M is the identity then Idy is equivalent to O if and only if M is
invertible. With these facts, it is easy to see that we have defined an equivalence
relation on Homg (M, M'). We denote by [f] the equivalence class of f.

With this equivalence relation, we will define a quotient category as follows.
Let . be the category of Z[ G] modules which are finitely generated free over Z.
Let € be the full subcategory whose objects are flasque modules. Using the
equivalence relation above, define & to be the quotient category of €. Thatis, ¥
has the same objects as € but Homg (E, E') consists of equivalence classes, [f],
of maps. Note that  is an additive category and that 0 is the zero object for &.

LEMMA 2.2. Let E be a flasque module and I an invertible module. Denote by
i : E — E € I the canonical inclusion and p : E €§ I — E the canonical projection.
Then, in %, [i] is an isomorphism with inverse [p].

PROOF. poiis the identityon E and icp: E@I—E &I maps E to E by
the identity and maps I to 0. If g = Idgg; — i p, then g is 0 on E and so factors
through I. Thus [i]e[p] = [i°p] = [Idea:]. Q.E.D.

The underlying idea is to try to define n : #£ — %. This won’t work because, in
%, equivalent things are isomorphic and not identical. Instead, we define
n': M—F as follows. For each M in M, choose a flasque resolution (in an
arbitrary way). If f : M — N is a morphism in #, we have the following diagram
where the horizontal maps are these chosen resolutions:

0O->M—->P—>FE—0

I

0>N->Q—-D-0.
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Here g’ exists by 2.1 and g is induced by g'. Then n'(f) is [g], by definition, and
so n'(M)=E and n'(N)=E".

We must show 7’ does not depend on our choice of g’. So suppose h': P — Q
is another extension of f and h : E — D is the induced map. g’ — h' is zero on M
and so induces a map E — Q. g — h is the composition of this map and the
map Q — D, and so [g] =[h].

Next let us consider the dependence of %' on our choice of resolutions.
Suppose 0->M —>P'—-E'—0 and 0—N— Q'— D'—0 are other flasque
resolutions. We form the pushouts P @y P’ and Q Gn~Q’. By the basic
properties of pushouts, there are exact sequences

0-»P->PHuP -E -0 and 0P —-PPHuP'—->E—0.

Since E and E’ are flasque, P PP’ =P P E'= P' P E. Similarly, Q v Q' =
QP D'=Q' @ D. Also, there are exact sequences

0> M->PPHP —->PPuP -0 and 0->N—->0QPO'->QPH~0O' —0.

Let g’, g be as above and choose K': P'— Q' to be an extension of f. K’ induces
a G mapK:E'— D' If we set

h=g®k:POP>0DQ),

then h' also extends f and induces a G maph : P@uP'— Q @G~ Q’. An easy
check shows that the following diagram commutes:

E<«—P&PuP —> E’'

[T

D«—Q&nQ —> D"

In %, the horizontal maps are isomorphisms and so [g] and [k] differ by
isomorphisms.

It is quite unpleasant to deal with %', since it depends on a choice of
resolutions. What we will do, then, is abuse notation and write n(M) = [n'(M)],
n(f)=[n'(f)] where we have identified morphisms in ¥ which differ by
isomorphisms. In the other sections of this paper, we will use 1 and not n’. This
cannot lead to a contradiction because we are really only interested in whether
n(f) is [0].

To summarize, then, n(M)=[0] if and only if there is an exact sequence
0—>M—P—I—0 where P is a permutation module and I is invertible. Of
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course, n{Idy) =[0] if and only if n(M) = [0]. This next result gives a criterion
for when n(f) =[0] for any G map f.

THEOREM 2.3. Let f: M- N be a G map. n(f)=[0] if and only if there is a
diagram, with the bottom row exact, as follows:

M
N
2.4) f l P
0->N—->N->0—-0
where P and Q are permutation modules.

ProOF. Suppose (24) is given. Let 0—>M—>L—->E—(0 and
0— N'— K — D — 0 be flasque resolutions. By composition we can form the
sequence 0 - N — K — D’—0. We note that D’ is an extension of Q by D, so
D'= Q & D. Denote by f’ the composition M - N —> N'.If g': L — K extends
f', it also extends f. Thus if g’ induces g.:E—> Q& D and g;: E— D, then
1'(f) is [g:1], up to isomorphism, and n'(f') is [g.] up to isomorphism. We have:

E—>E

ok

QYD ——D

and so [0] = [g:] if and only if [0] = [g.]- Now n’(P) is isomorphic, in &, to 0 and
n' is a functor, so n'(f") = [0] implying that »’(f) = [0]. By our abuse of notation
(above), n(f) =[0].

Conversely, suppose that % (f) = [0]. Choosing flasque resolutions for M and
N we conclude that there is a diagram:

0>M—->P-SE—0
0->N->Q—>D—-0

where P, Q, and P’ are permutation modules and E, D are flasque. Form the
pullback Q Xp P’ and insert it into the diagram. We have:

0->M—P— E—>0

I

0->N—->QX%XpP'—-P -0

Il

0->N— Q— D -0
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Rewriting some of the maps above we have:

0- M = M -0

|
N
0> N—->QXpP'—- P —0.

This proves the converse. Q.E.D.

We end this section with some calculations, the first of which will prove that
n(f)#[0] for a specific mapf. Suppose G'C G is a normal subgroup. Set
I C Z[ G] to be the left ideal generated by all elements of the form o — 1 where
cEG'.

ProPOSITION 2.5. Let M be a G module, set N = M[IsM, and let f: M — N
be the natural map. Then f factors through a permutation module if and only if N is
invertible.

Proor. If N is invertible, then it is clear that f factors through a permutation
module. Conversely, suppose f factors as h g where g: M~ P, h: P— N, and
where P is a permutation module. Since IsN =0, h factors as h.c h, where
h,: P/IcP— N and h,: P> P/IsP. If g'=h,og: M — P/l P, then g’ factors
through N =M/IsM. That is, g'=g"of where g": N-> P/Is.P. All in all,
h,og”"=1dn since hyog"of =h,ocg'=hog ={ Thus it suffices to show that
P/Is P is a permutation module. But Z[G/H]/I-Z[G/H] = Z[G/G'H} and so
we are done. Q.E.D.

For any finite group G, set Js to be Z[G]/Zts where t6 =2,e60. N C G is
a normal subgroup, there is a natural G map Jg — Jg,n where, of course, Js/n
can be considered to be a G module. This map is defined by sending 1 + Zt; € Js
to 1+ Ztg;n € Join. The proof of the following result about the J;’s borrows a
lot from the discussion in [6], p. 183.

THEOREM 2.6. Let p be a prime and let G be a finite abelian p group of rank 2.
Suppose N C G is a subgroup such that G/N also has rank 2. If f is the map
J — Jgn defined above, then (f) #[0].

Proor. Let o, 7 be a basis for G such that ¢ + N and 7 + N are a basis for
G/N. Consider the exact sequence 0— Z — Z[G]— Z[G]| D Z|G]— Ec —0
where Z is the G module with trivial action, 1 € Z maps to t; € Z[G] and
1€ Z[G] maps to (c—1,7—-1)€ Z[G] D Z[G]. Es is defined by this se-
quence. Calling h the map Z — Z[G], we have that J; is the cokernel of h. Thus
we have two short exact sequences



178 D. J. SALTMAN Isr. J. Math.

0-Z—->Z[G]—>Js—0 and 0—-J;—Z[G]PH Z[G]— E:—0.

If G'C G is a subgroup, H '(G',Ec)=H(G',Js)=H'(G',Z)=(0). Hence
Eg is flasque and n(Js) =[Eg]. Similarly, there is a resolution

and n(Js/~)=[Ec/~]. The natural map Z[G]P Z[G]— Z[G/N]PH Z[G/N]
induces a mapg:Es— Egn~ and n(f)=[g]. Explicitly, Es(Esnw) is
Z[G])P Z[G] (Z[G/N]6 Z[ G/N]) modulo the left submodule generated by
(c —1,7—1)((cN — N, 7N — N)). It is now easy to see that Eg /IvEc = Eg/~ and
g is the natural map. By 2.5, it suffices to show that Js,~ is not invertible. This
was shown in [6]. Simply outlined,

H'(G/N, Eg;x)= HXG|N,Jo) = HG/IN, Z) #0. QED.

In the theory of algebras, the following G module is of particular interest. Let
G be a finite group and let P be a free Z[G] module with basis
{é(a,7) | 1# 0,7 € G}. Consider R C P to be the left Z[G] submodule gener-
ated by all expressions of the form

é(o,7)+¢(or,m)—o(C(r,m))—C¢(o, ™) forall o,7,m € G,

where we have set ¢(1, o) = ¢(o,1) = 0. Define M,(G) = P/R. One should think
of M,(G) as the module generated by a ““generic”’ two cocycle of G.

Set ¢(o,7)=¢(0,7)+ R € My(G). The form of the relations in R makes it
clear that Mx(G) is a free Z module with basis {c(o, ) | 1# o, T € G}. Note that
if HQG is a normal subgroup, there is a natural G module
map Mx(G)— M(G/H) defined by sending c(o,7) to c(oH, 7H). Our final
result of this section will be a study of the My(G)’s in a special case. In [2], a
study of abelian crossed product algebras was made using a description of
abelian crossed products that is essentially due to Dickson. Here we are going to
perform an analogous argument for G modules, but restricting ourselves to rank
2 abelian groups. So let G be an abelian group with generators o, T such that
G = (o) (r). We first consider the following module. Let

H=(o), K=(r), and Q = Z[G]® Z[G/H]®D Z[G/K].

Consider R'C Q to be the left submodule generated by (1+o+---+
" ,tH—H,0) and (1+7+---+7"7,0,0K — K), where n is the order of o
and m is the order of . Set N = Q/R’. We can think of N as the module
generated by u, b, ¢ subject to the relations
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ab)=b, 1(c)=c¢, (I1+0+ -+ Yu=1(b)—b,
and (1+7+---+7" Nu=0c(c)—c.

The result of Dickson (appearing in [2]) has as a special case that any crossed
product algebra A(L/F, G,d) can be described via u’, b’, ¢’ € L* which satisfy
exactly these relations. More precisely, let

A(L/F,G,d)=€P Lu,
neG

where u,us = d(n, 8)u,s and u,z = n(z)u, for all z € L. If we set
u' =uuu'u', b'=(w)", and ¢ =(u.)",

then u’, b’, ¢’ are as claimed (but note that L* is a multiplicatively written G
module). In terms of the cocycle d,

"=d(o,7)d(r,0)", ¢ =d(r,7)d({, ) - d(="",T)
and b'=(d(o,0)d(0’,0)---d(c" ", o))"
In pure module terms, there is a G map g : N = M;(G) defined by setting
gu)=c(o,7)—c(r,0), gb)=—c(o,0)—c(o’,0)——c(c"',0)
and
gle)=c(nr)+-+c(r™, 7).

To show that g is well defined, one must show that these elements satisfy the
relations defining R’. To avoid doing this directly, one can take L/K a G Galois
extension of fields, set K’ = Q(L/K, M,(G)) (which will be defined in §3) and
L'=L @« K’. Now use the ¢(n, ) which generate M,(G) to define a crossed
product A(L'/K’', G, ¢), and then quote [2].

Next we consider M,(G)/g(N)=M'. Set ¢'(n,8) = c(n, 6)+ g(N). Consider-
ing the algebra case, we see that the cocycle ¢’ must be split. In fact, an easy

argument (one can use algebras again) shows that the necessary coboundary can
be defined as follows. Set

d)=1, d(o)=1, d(r)=1,

d(o-i) = ¢'(o, U)C’(o-z, 0,) . c/(a_i—1

,0) fori>1,
d(7y=c'(r,7)---c(',7) forj>1,

and
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d(a')=c'(a,0) c(a ", a)e(n,7) - e(#7, 1) for i,j>1.

Then for any ¢, 8§ €EG, c'(s,8)=d(g)+ ed(8)—d(e8). In particular, M’ is
generated over Z[G] by the d(e)’s.

We further analyse this situation as follows. Define H:Js — N by setting
h(1+ Zit) = u. Then N/h(Jg) is easily seen to be isomorphic to Z @ Z. Let g be
the order of G. Mx(G) has Z rank (q —1)°. N is generated by q + 1 elements
over Z. Thus M' has Z rank greater than or equal to (q—1Y—(q+1)=
q(q —3). It follows that M’ is a free Z[ G ] module with basis {d(¢) | e#l,0,7}, 8
is an injection, N is a free Z module of rank ¢ +1, and h is an injection.

THEOREM 2.7. Let G be a finite abelian group (o)) as above.

(@) n(Us)=n(MAG)).

(b) Suppose HC G is a subgroup such that G/H ={cH)@®(vH). Let
f:Jo—Jom and g : MAG)— M(G/H) be the canonical maps. Then n(g)=
n(f) # [0].

Proor. Part (a)is done above and (b) is an easy diagram chase. Q.E.D.

§3. Retract rational extensions

In this section we begin the core of this paper; the study of a class of field
extensions called retract rational. These extensions were first introduced in [25],
where some of the results we are about to present were stated, and occasionally
given sketchy proofs. Here we will use the general language of §1 to give
complete and very general proofs of the result in [25].

As we are about to see, the concept of retract rationality arises naturally when
one studies lifting problems. To motivate the definition to come, recall that a
rational (or purely transcendental) field extension K/F is one where K contains
Xy, *, X algebraically independent over F and K = F(x, " * -, %»). It is useful to
think of K as a “free” object with basis x,, - -, x.. Retract rational extensions
correspond to projective objects.

DeriNiTION 3.1, Let K D F be fields. K/F is called retract rational if and only
if K is the quotient field of an F algebra domain S C K, such that there are F
algebra maps

¢:S—>F[xy, -, x,}J(1/w) and ¢ :F[x1, -, x.](1/w)—>S

where F[xy, -+, x.](1/w) is a localized polynomial ring and ¢ ° ¢ is the identity
on S.
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Retract rationality often corresponds to the lifting property of a single F class.
Later on, we will study a relative lifting problem between two F classes. The
corresponding field theory concept will be defined next.

DEeriniTION 3.2, Let S, R be F algebra domains, and let ¢ : S— R be an F
algebra map. We say ¢ factors rationally if and only if there is a localized
polynomial ring F[x,, -, x,](1/w), a 0#r ER, and F algebra maps

y:S—F[x, -, x.](1/w) and n:F[x;, -, x.](1/w)— R(/r)
such that ¢ = no .

Let us make a few elementary definitions and observe a few easy facts. If S, T
are F algebras, and ¢ :S—T; :T—S§ are F algebra maps such that
Yo = Ids, we say that S is a (i, ¢) retraction of T. If the maps need not be
specified, S is just called a retraction of T. If T has the form F[x,, -, x.](1/w),
we say S is a localized polynomial retraction. Suppose S, T are domains and S is
a (i, ¢) retraction of T. If 0 # s € S, then S(1/s) is a retraction of T(1/¢(s)) via
the unique extensions of ¢ and ¢. More generally, if ¢ : S — T factors rationally,
and s €S satisfies ¢(s)#0, then the unique extension of ¢ to
¢ :S(1/s)— T(1/¢(s)) factors rationally. Also, the relation of retraction is
transitive. That is, if S is a retraction of T and T is of R, then S is a retraction of
R, via the obvious maps. If S is a retraction of T, then clearly S{x,, -, x.] is a
retraction of T[x,, -, x.}].

The effect of the above observations is that, to some extent, the definitions 3.1
and 3.2 are independent of the domains involved. But to make this clearer, we
present a result of Swan’s. For convenience, we include a proof.

LemMmA 3.3. [27] Let F C K be fields, and let S,, S, C K be affine F subalgebras
such that q(S.)= K. Then there are 0#s, €S, and 0#s5,€ S, such that
Si(1/s1) = Sa(1/s2).

ProOOF. Since S, is finitely generated, there is a 0#s;E S, such that
S: C Sx(1/s3). Since S:(1/s3) is finitely generated, there is an s, € S, such that
SA1/s2)C So(1/s,). But s, =t/(s3)" for some positive integer n and some
0#1 €8S, We now claim that S,(1/s,) = S:(1/s,) where s, = s:t. Note first that
S:(1/s2) = Sx(1/s3)(1/¢). So, in order to show that S(1/s:) D Sx(1/s2), it suffices to
note that

1/t =(1/s)(1/s3)" € Si(1/s)).
In order to show that Si(1/s,) C S:(1/s.), we observe that 1/s, = (s2)"/t € Sa(1/s).
Q.E.D.
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Combining this lemma and the observations preceding it, we conclude the
following.

CoroLLARY 3.4. If K/F is retract rational, and S C K is an affine F sub-
algebra such that q(S)=K, then for some 0#s €S, S(l/s) is a localized
polynomial retract.

Now is a good time to notice a useful fact which was part of the proof of 3.3.
Let $” be a domain with ¢g(S")= K. For some 0 #s"€S", set S’ = §"(1/s").
Repeat the process for some 0 # s’ € §’. That is, set S = S$'(1/s’). But now notice
that S also has the form $"(1/¢). In fact, if s'=¢'/(s")" then S = S"(l/s"t").

Up to now, we have implied that the concept of factoring rationally is a
generalization of retract rationality. We make this precise in the next lemma.

LEmMA 3.5. Let S be an affine F algebra domain and set K = q(S). K/F is
retract rational if and only if the identity i : S — S factors rationally.

Proor. If K/F is retract rational, it follows by 3.4 that for some 0 # s € S,
S(1/s) is a localized polynomial retract. In other words, the inclusion
i:S— S(1/s) factors through a localized polynomial ring. Conversely, suppose
that there are 0 # s € S,

¢:S— Flxy, -, x.]J(1/w) and ¢ :F[x;,- -, x.](1/w)— S(1l/s)

such that s c ¢ = i. Set v = ¢(s) and note that ¢(v) = s. Thus ¢ extends uniquely
to
¢ :S(/s)—> F[x,, -+, x.](1/wv)

and ¢ extends uniquely to
g Fxy, - x. J(1/wo)— S(1/s).

Now i ° ¢ must be the identity on S(1/s), so S(1/s) is a localized polynomial
retract. Q.E.D.

We will now review some classical kinds of field extensions, and begin to see
where retract rational extensions fit in. A field extension, K/F, is called
unirational if K C L, where L/F is a rational field extension. An immediate
consequence of the definition is that every retract rational extension is uni-
rational. Already in [25], and again in Theorem 4.12 to come, examples are
presented which show the converse false.

Two fields, K, L, are called stably isomorphic over F if there is an
isomorphism K(yi,* -+, y.)=L(z),-*,2z=) over F, where the y’s and z’s are
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indeterminants. An extension K/F is called stably rational if K is stably
isomorphic, over F, to a rational extension of F. We are about to show that stably
rational implies retract rational. More so, we are about to show that retract
rationality respects stable isomorphism. But before we state the result, let us
again point out that the converse is false. Swan showed that if G = C,, is the
cyclic group of order 47, and K is the field of invariants (under the obvious
action) of G on Q(x, | g € G) then K/Q is not stably rational. However, as was
pointed out in [25], and will be stated below, K/Q is retract rational.

ProrosITION 3.6. (a) Let K, L be fields which contain F and are stably
isomorphic over F. If L[F is retract rational, then so is K/F.

(b) Let S, T, and T’ be F algebra domains, where T C T'. Assume ¢ : S — T is
an F algebra map, and assume that q(T")/q(T) is rational. If the composition
S — T — T’ factors rationally, then so does ¢.

We begin this proof by stating and proving a lemma, which follows.

LemMma 3.7. Suppose S is an F algebra domain, and T = S{x, - - -, x.](1/s) for
some 0#s € S[x\,- -, x,]. Then forsome 0 # s' € S, S(1/s") is a (¢, ¢) retraction
of T(1/s’), where ¢ is the inclusion.

Proor oF LEMMA.  Since F is infinite, there is an F algebra homomorphism
¢ 1 S[xi,- -, x.]— S such that s’ = (s) # 0, and such that ¢ is the identity on S.
In fact, ¢(x;) can be chosen in F. This map ¢ extends uniquely to an F algebra
map

g :T=8[x, -, x.](1/s)— S(/s").

We may consider s’ as an element of T and note that ¢ extends to
Y :T(1/s")— S(1/s’), where  is the identity on S(1/s’). In other words, if ¢ is
the inclusion S(1/s")C T(1/s"), S(1/s")is a (¢, ¢ ) retraction of T(1/s"). Q.E.D.

We now return to the proof of 3.6. To begin with (a), say L = q(S) where § is
a retraction of F[x;, -+, x.](l/w). Hence S[zi,---,z.] is a retraction of
Flxi, ", Xm, 21, - -, 2. ](1/w). Of course,

q(S[zi,- -z )= L(z1, "+, za).

Thus we may assume K(yi,---,y.)=L where L/F is retract rational. Suppose
K =q(T)where T is an affine F algebra. By 3.4, thereisa0#£t € Ty, -+, ¥x]
such that T[y,,---, y.](1/t) is a localized polynomial retract. But by Lemma 3.7,
some T(1/t') is a retraction of T[y,---,y.](1/#t"). By the basic properties
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mentioned above of retractions, this later algebra is also a localized polynomial
retraction. Then we are done by the “transitivity” of retractions.

To prove (b), assume ¢’ € T’ is such that the map S — T'(1/t’) factors through
a localized polynomial ring. By Swan’s lemma, we may assume

T'A/0y=T[y:,- -, y](1/t)  for some 0#t &€ Ty, -, yal-
To be explicit, assume the given map ¢': S — Ty, -, y»](1/t) factors into
Y:S—>F[x, -, xa](1/w) and n 2F[xy, 5 xmJ(L/w)— Ty, -+, ya ] (1/1).

For some 0#s €T, we know by 3.7 that T(1/s) is a (8,i) retraction of
T[y:,- -, ya}(1/ts), where i is the inclusion. Hence, as maps from S to T(1/s),
¢ =8¢’ Thus ¢ is the composition of ¢ and

dom:F[xi, - xa](1/w)— T(1/s). Q.E.D.

We have now covered most of the (known) elementary or basic properties of
retract rational fields. What is lacking is a clearer reason why retract rationality is
analogous to projectivity. This is the point of the next result. Before presenting
this result, let us make two comments. What the following result does not do is
make retract rationality exactly projectivity in some category. This may be
possible, and also may be fruitful. Second, the following result has a form that
will be repeated. We will first state (for clarity) a result about retract rational
fields, and then state an analogous, more general result for rationally factoring
maps. Though the first statement will seem more intuitive, the second, more
general statement, is necessary for one of our applications.

THEOREM 3.8. Let K/F be an extension of fields. The following are equivalent :

(i) K/F is retract rational.

(ii) K is the quotient field of an affine F algebra S which satisfies the following
condition. Suppose T, M is a local F algebra, L = T|M, p : T — L is the canonical
map, and ¢:S—L is an F algebra map. Then there is an F algebra
mape':S— T such that po¢' = ¢.

The proof of the above theorem will be encompassed in the following more
general result.

THEOREM 3.9. Let ¢ : S— R be an F algebra map between F algebra do-
mains. Then the following are equivalent.

(i) ¢ factors rationally.

(ii) There is a 0#r € R such that the induced map¢ :S— R(1/r) has the
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following property. Suppose T, M is a local F algebra, L = T/M, p: T — L is the
canonical map, and  : R(1/r)— L is any F algebra map. Then there is an F
algebra mapy': S — T such that poy' = o .

ProoF. First, let us show how 3.9 implies 3.8. If K/F is retract rational and
K =¢q(S) where S is a localized polynomial retract, then the identity i : S — §
factors rationally. Quoting 3.9(ii), we have that some S(1/s) has the property
3.8(ii). (Actually, S itself satisfies 3.8(ii), but this is not important and only occurs
because of our choice for the form of 3.9.) Conversely, suppose 3.8(ii) holds for
such S. By 3.9, the identity i:$— S factors rationally and 3.5 finishes the
argument.

Turning now to the proof of 3.9, let us assume 3.9(i). Explicitly, we assume ¢ is
the composition of

n:S—F[x, -, x.](1/w) and &:F[x;,- -, x.](1/w)— R(1/r).

If T, M, L, p, and ¢ are as given in 3.9(ii), set a; = ¥ (6(x;)). Choose b; € T to be
preimages of the a;. Define p : F[x,, -+, x.](1/w)—> T by pu(x;)=b;,. u(w)is a
unit because p(p(w)) = ¢ (8(w)) #0. If we now set ¢’ = p o n, ' is the required
map.

Conversely, assume 3.9(ii). Since R(1/r) is affine, there is an F algebra
surjection n : F[x,, -+, x.]—> R(1/r). Let P be the kernel of 7, and form the
local ring F[x,,---,x.]p = T. If M is the maximal ideal of T, and K is the
quotient field of R, then T/M = K. 5 extends to the map n : T — K. Applying
3.9(ii) to the inclusion i:R(1/r)—> K, we have an F algebra map
$:S—F[xi, - -,x.]p = T such that ne =ioq. Since S is affine,

$(S)C Fxi, -+, x. J(1/w) for some wg& P.
Also, 7 yields a surjection
n:Flxi, - x.](1/w)— R(1/rv) where v = n(w).
Inall, ¢ : $ = R(1/rv) is the composition of ¢ and 7. Q.E.D.

REMARK. Assume q(R)/F is separably generated. Note that, in the proof
that 3.9(ii) implies 3.9(i), it is then only necessary to consider T, M which are
discrete valuation rings. This is because the T, M which occur in the proof are,
first of all, nonsingular. But more so, by changing R(1/r) to R(1/rr’) if necessary,
we can write R(1/r) as the image of some F[x,,- -, x,](1/s) where n is less than
or equal to one plus the Krull dimension of R. With this choice, the T, M that
has to be treated is a discrete valuation ring.
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Up to now, we have presented the properties of retract rational extensions
without reference to lifting problems or F classes. However, 3.8 makes it clear
that lifting problems are closely related to retract rationality. The next corollary
states the precise connection. It is this connection, for some specific F classes,
which led the author to consider retract rationality, and is the main justification
for the concept’s introduction. This next corollary is stated in the general
language of §1. It should be thought of as an outline, which can be applied to
proving lifting properties or retract rationality in some very concrete situations.
Two examples will follow, and a third will come later in this paper. Once again,
we will state the more intuitive fact about retract rationality first, and then the
more general fact about rationally factoring maps.

CoROLLARY 3.10. (a) Let € be an F class, ?/R € € a local projective object
which is also densely representing. If K is the quotient field of R, then € has the
lifting property if and only if K/F is retract rational.

(b) Let € C %' be F classes of the same type, let M/R € € be a densely
representing object, and let /S € €' be a local projective object. Supposer, S are F
algebra affine domains, and ¢ :S— R is an F algebra map such that M =
P R, R over R. Then (€, €’') has the (relative) lifting property if and only if ¢
factors rationally.

ProoOF. As before, (a) is a special case of (b). As for (b), assume (€, €') has
the lifting property. It is now very easy to see, using all the givens, that ¢ : $ > R
satisfies the condition 3.9(ii). Conversely, suppose ¢ factors rationally. Specific-
ally, suppose ¢ : § — R(1/r) satisfies 3.9(ii). Every N/K € ¢, for K a field, is a
specialization of # QrR(1/r). Then 3.9(ii) implies that the lifting property
holds. Q.E.D.

We can now give two examples of the use of 3.10. Our first example will
involve the F class of Azumaya algebras of degree n, which we recall was
labelled & (F, n). Also recall that Z(F, n, r) is the center of the generic division
algebra UD(F, n, r).

THEOREM 3.11. Z(F, n,r)/F is retract rational if and only if o (F,n) has the
lifting property. That is, if and only if for every local commutative F algebra T, M,
and every simple F algebra A of degree n over its center K = T|M, there is an
Azumaya algebra BT such that B QK = A.

Proor. By 3.10, we must present an appropriate densely representing local
projective object. Let A’ = R(F, n,r) be the ring of generic matrices with center
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C’. There is a 0# s' € C' such that A = A'(1/s’) is Azumaya over its center
C=C'(1/s"). As A is finite as a module over C, an exercise (called the
Artin-Tate lemma) shows that C is affine. By 1.3, A/C is a local projective
object. A/C is also densely representing. If 0# ¢t € C, we can write C(1/t)=
C'(1/s) for some 0#s € C'. If B is a central simple algebra over K D F of
degree n, then by e.g. [13], page 92, there is an F algebra map ¢ : A’— B such
that (s) € K is nonzero. Thus ¢ extends to a map ¢ : A ®cC(1/t)— B. Let
¢ : C(1/t)— K be the restriction of . Since A/C is Azumaya, ¢ induces an
isomorphism A (1/t)®, K = B. Q.E.D.

Our second application of 3.10 is to F classes of Galois extensions. Recall that
the F class of all Galois extensions with group G was denoted €(G). Now let V
be a finite dimensional left F[G] module such that the map G — Homg(V, V)is
an injection. Form the symmetric algebra F.[ V], and its quotient field F.(V). G
acts on F.(V) in the obvious way.

THEOREM 3.12.  F.(V)“/F is retract rational if and only if €(G) has the lifting
property.

Proor. Once again, we must present a local projective densely representing
object. By our assumptions, G acts faithfully on F.(V) and so F.(V)/F.(V)° is
G Galois. Set R"=F.[V]°. Since R" has quotient field F.(V), there is an
0 # r" € R" and a subalgebra S’ C F.(V)such thatif R’ = R"(1/r"), then S'/R"is
Galois with group G, R’ is affine and S'F.(V)° = F.(V) (see [23], p. 274). By
Swan’s lemma, there are 0#s'E€ S’ and 0# s € F,[V] such that S'(1/s")=
F.[V]}(1/s). Let r' be the G norm of s’ and r the G norm of s. S'(1/r') and
F.[V](1/r) are both closed under the G action. It follows that 1/r' € F.[V](1/r)
and l/reS'(l/r"). Hence S'(1/r')=F.[V](1/r). All in all we have R =
F.[V]°(/r)and S = F.[V](1/r) such that S/R is Galois with group G and R is
affine.

By 1.3, §/R is a local projective object. It remains to show that S/R is densely
representing. As a first step, we note that it suffices to prove the following claim.
Suppose K D F is afield, L/K is G Galois, and 0 # s € F.[V]. Then there is an
F algebra map ¢ : F,[V]— L such that ¢ preserves the G action and ¢(s) # 0.
This claim suffices because if r; € R, we choose such a ¢ with ¢ (rr)) # 0. Hence ¢
induces a G preserving mape¢: F.[V](1/rr')=>L and ¢ restricts to a
map ¢ : R(1/r")— K. Finally, ¢ induces a K linear epimorphism from S &, K to
L, which is an isomorphism by checking dimensions.

Thus it suffices to prove the claim. Using duality over F, it is easy to see that
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there is a free F[G] module W such that V C W. Since we can consider
F.[V]C F.[W], it suffices to prove the claim for the free module W.K Also,
since F.[W]C L.[W], it suffices to prove the claim for L.[W]. But L.,[W]is
nothing but a polynomial ring of the form L[x:, | 1=i=nand g € G],where G
acts on the x;,’s in the usual way, and G acts on L. If W has rank one (i.e. n = 1),
our claim is just the Dedekind independence theorem for L/K (see [13], p. 283).
For general W, let s € L.,[ W]. By the rank one case, there are a, € L such that

gla)=ags and s(ag, ", An,X2g, " "> X2, X3g, " "5 Xni ) Z 0.
We can proceed by induction to prove the claim. Q.ED.

Later on in this paper we will prove the lifting property for Azumaya algebras
of prime degree and therefore, by 3.11, show that Z(F, p, r)/F is retract rational.
In [23], generic objects were constructed for Galois extensions with abelian
Galois group over certain F. These F classes have the lifting property, and we
have the following corollary.

COROLLARY 3.13. Let A be a finite abelian group, and 2’ the highest power of
2 dividing the exponent of A. Assume F is a field such that either F has
characteristic 2 or F(p)/F is cyclic where p is a primitive 2’ root of one. Suppose V
is a finitely generated F| A | module such that A —Homg(V, V) is injective. Then
F(V)*[F is retract rational.

In [23], it was shown that if the exponent of A is a multiple of 8, then there is
no generic object for A-Galois extensions over the rational field Q. Thus,
Q(V)*/Q is not retract rational. One is thus led to ask as to exactly when
F(V)*/F is retract rational. The answer, to be given later, is that if F(p)/F is not
cyclic, then F(V)*/F is not retract rational.

Up till now, the only way to show that a field extension is not retract rational is
to invoke 3.10 and some failed lifting problem. This does not, however, seem
sufficient to product results like the one mentioned in the above paragraph. An
examination of the previous work [16], [8], [29], [6], etc. makes it clear that it is
important for these problems to examine so-called function fields of algebraic
tori. In the rest of this section we will discuss these function fields and determine
exactly when they are retract rational. This will allow us to solve problems of the
type mentioned above.

For our purposes, it suffices to describe these function fields as follows. Let G
be a finite group, and L/F a Galois extension with group G. Let M be a Z[G]
module. As in §2, this will always include the assumption that M is finitely
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generated free as a Z module. Form the group algebra (not the symmetric
algebra!) L[{M]. This is a domain, with quotient field we denote by L (M). G acts
on L[M] by acting on L and M, and so G acts on L(M). The field we are
interested in is denoted by Q(L/F, M) and is equal to the fixed field L (M)°.

It has been amply demonstrated in [27], [16], [8], [29], [6], that the fields
Q(L/F, M) can be studied via groups of units of affine subrings of L(M). We
now give an extremely brief summary of this theory, making use of the notation
of §2. This summary will follow the exposition in [6], and we refer the reader to
this source for further details. Recall that if M is a Z[G] module, and
0— M — P— E — 0 is a flasque resolution of M, then p(M) is defined to be the
similarity class of E.

Before continuing, let us make some notational remarks. For any ring R, we
denote by R* the group of units of R. M, which in §2 was always written
additively, is a subgroup of the multiplicative group L[M]*. We therefore must
make the convention that when viewed as contained in L[M], M will be written
multiplicatively. Otherwise, we will stick to the additive notation of §2.

The study of the fields Q(L/F, M) starts with the observation that if
S = L[M], then as G modules, $*/L* = M. In fact, if § C L(M) is any affine, G
invariant unique factorization domain with quotient field L(M), then
p(S*/L*)=p(M). Also, Q(L/F, M) s stably isomorphic to Q(L/F, N)over F if
and only if p(M) = p(N). In particular, Q(L/F, M) is stably rational if and only
if p(M)=0. In the proof of these facts it is observed that if P is a permutation
module, then L[P]° is a localized polynomial ring. Note now that the same
argument shows that L[P]° is a localized polynomial ring over F even when L is
not a field, but only Galois over F.

With the questions we wish to answer, it turns out to be appropriate to
examine the relationship between the fields Q(L/F, M) and the map 7, as
defined in §2. The main result along these lines is next.

THEOREM 3.14. Let G, M, and L/F be as above.

(a) Q(L/F, M) is retract rational if and only if n(M)=[0].

(b) Let f:M— N be a map of G modules and ¢ : L[M]° — L[N]|° the
induced map of F algebras. Then ¢ factors rationally if and only if n(f)=[0].

Proor. It suffices to prove (b), since (a) is the special case f = Idx. So assume
@ factors rationally. That is, assume that there is a0 # s € L[N]° and F algebra
maps

¢ :L[M]° > F[x,, - -,xn](lly), 8 :F[x1, -, x.](1/w)— L[N]°(1/s)
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such that 8¢y = ¢. Tensoring by L we have G preserving F algebra maps
¢': L{M]— L[N], ¢':L[M]— L[x,- -, x.](1/w) and

8" L[x1, -, % ](1/w)— L[N](1/s)

such that 8'< ' = ¢'. All three of these maps restrict to G module maps on the
groups of units modulo L* We note that L[M]*/L*=M,
L[x, -, x.]J(1/w)*/L* is a permutation module we will call P, and N'=
L[N](1/s)*/L* fits into an exact sequence 0= N — N'— Q —» 0 of G modules
where Q is a permutation module. All our maps together constitute the
following diagram of G modules, with the row on the bottom being exact:

~
(3.15) RN

0 N N’ Q 0
Thus by 2.3 we have n(f)=[0].

Conversely, suppose 1(f) = [0]. By 2.3, there is a diagram (3.15). Let ¢’ be the
induced map L{M]° — L[N']°. ¢ factors through L[P]°, which is a localized
polynomial ring. Finally, L(N")°/L(N)° is a rational field extension (see proof
of theorem 6.8 of [28]), so we are done by 3.6(b). Q.E.D.

In certain lifting problems, the following fields are relevant. Let G be a finite
group, and let L/F be a finite extension of fields with Galois group G. Recall
that a G module M,(G) was defined at the end of §2 as follows. Mx(G) is
generated by elements ¢(o, 7) where 1 # o, 1 € G, modulo the relations which
make c(o, 7) a 2-cocycle. The fields we are interested in are the ones of the form
Q(L/F, M) where M = My(G).

The field Q(L/F, M) will be shown to be related to the following F class.
Denote by o/ (L/F) the F class of Azumaya algebras which are crossed products
of the form A(L ®-R/R, G, d) where R is any commutative F algebra and
d(o,7) is a two cocycle of G in (L @rR)*. In formally writing these crossed
products as linear structures, we will assume that the structures specify the
embedding of L in the algebra. We can do this because L has a finite basis over
F and so we can specify the image of each basis element in the algebra. The
effect of all of this is that the morphisms (¢, ¢ ):

A(L ®+R/R, G,d)/R — AL ®+S/S,G,d")/S

are exactly pairs (¢, ¢) of algebra morphisms where $(L @rR)C L ®rS and ¢
restricted to L @R is just the map induced by ¢. For example, an R
isomorphism in & (L/F) can be specified by an algebra isomorphism
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¥:A(L Q:R/R,G,d)— AL ®R/R,G,d")

such that ¢ is the identity on L QrR. We are specifically not assuming that the
morphisms preserve the cocycles.

We are about to apply 3.10 to the F class /(L/F). In order to make the
application, we will describe a local projective densely representing object for
SA(L/F). Set S =L[M], R=L[M]° Since S =L ®+R, S/R, is G-Galois.
Denote by ¢ the G 2-cocycle which generates M = M,(G), and form the crossed
product A = A(S/R, G, c). We consider A/R as an object in o/ (L/F).

LemMMA 3.16.  A/R is a local projective densely representing object for s{ (L [F).

ProoF. We  begin by showing local projectivity.  Suppose
(¢, ¢): B'/T— BV is a surjective map in &{(L/F) such that ¢ '(V*)= T*. Let
(1, 8): A/R — B/V be any map in & (L/F). Explicitly, write

B=A(L®:V/V,G,d) and B’ =A(L Q:T/T,G,d").

The restrictions ¢': L QT —L @V and p': SL Q¢ V are induced by ¢ and
& respectively. Using the norm of the extensions L &-T/T and L K V/V, itis
easily seen that

W)L @ V) )= (L QrT)*.

Also, ¢' is surjective. Let {u,},ec be the canonical S basis of A such that
Uu, = c(o, 7)., and u,s =o(s)u,. Let v, and w, be the corresponding
elements of B and E'. Now u(u,)v,' is a unit in L ®rV we call g(o), and
¥(w,)v,' is a unit in L ®-V we call f(o). Note that

p(clo, 7)) = g(o)o(g(r)g(or) 'd(o, 7)

and
¥(d'(0,7)) = f(a)a(f(1))f(ar) " d(0, 7).

Choose g'(o), f'(o) E(L @rT)* such that Y(g'(c)) = g(o) and ¥ (f'(a)) = f (o).
Set

wo=g'(a)f (o) w,.

Then the (w;)’s form an L Q¢ T basis of B’, w)t = o(t)w/ for t EL @, T, and
d"(o, 1) = wi(wi)(wl,) ' satisfies ¢(d"(c, 7)) = p(c(o, 7)). We can now define a
G maph: M — (L ®rT)* by h(c(o,7))=d"(o,7). The map h extends to a G
preserving L algebra mapy': L[M]— L QrT. If we set y(u,)= w, then y’
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extends to a mapy: A — B'. If ¢ is the restriction of y to R = L[M]°, then
(¥, @)e (v, €)= (u, 8). So local projectivity is proved.
To prove the densely representing property, we first state a lemma.

LEmMMA 3.17. Let K be a field, and d(a,7)E(L QrK)* a G 2-cocycle.
Suppose 0#s € L[M]°. Then there is a G preserving L algebra map
¢ : L[M]— L @K such that ¢(s)#0 and

¢(c(o, 7)) = d(o, 7)g(0)o(g(1))g(07)”
for some g(o) €(L KrK)*.

PrOOF. We begin by considering the G module M = M(G). Let P be a free
Z[G] module with basis {b(c) | 1# o € G}. Define f: M — P by setting

flc(o,1))=b(0)+ ab(r)—b(o7), where b(1)=0.

This G map f is clearly well defined. Recall that if n is the order of G, then M
has Z rank (n —1)’. By a similar argument, P/f(M) has Z rank n — 1. Since
(n =1y’ +(n —1)=n(n — 1) is the rank of P, f must be an injection. Using f, we
can assume L[M] is a subalgebra of L[P].

Now view L[M] as a localized polynomial ring with the c(o, 7)’s as variables.
To make the c¢’s look more like variables, set ¢(o, 7) = x,... Let 5s"(g(c)) be s
with d(o, 7)g(a)(og(r))g(or)™' substituted for x,,. The lemma exactly states
that there are g(o)E(L ®rK)* such that s"(g(c))#0. View L[P] and
(L ®&K)[P] as localized polynomial rings with variables o (b(7)). For the same
reason as above, we set y,. = a(b(7)). Let s' € (L ®-K)[P] be defined as s
with yi..Ya..y1.e-d(c, 7) substituted for x.... That is, let ¢ : L[M]— (L ®+K)[P]
be the unique G preserving L algebra map such that

(/j(xmf) = yl,ayﬂ-"’y ;.:de(a', T)v

and set ¢(s)=s'". Since s €EL[M]% s'€(L ®:K)[P]°. Suppose s’ #0.
(L ®«K)[P]° is a localized polynomial ring over K, so there is a K algebra
map u : (L @:K)[P]° = K such that u(s') #0. Tensoring 7 by L yields a G
preserving L algebra map

#' (L @ K)[P]—> L @K

such that p'(s")#0. If ¢ = pu'oy, then ¢ is the required map.
Thus we end the lemma’s proof by showing that s’ # 0. Let K" D K be a field
extension splitting d (o, 7). That is, there are f(o) € (L @ K")* such that
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d(o,7) = f(@)o (f(r)f(ar)""

Viewing s as in L[P}], i.e. as a polynomial in the y’s, we see that as an element of
(L ®K")[P], s is just s with o (f(7))y... substituted for y,.. Since the o (f(7))’s
are units, s’ # 0. Q.E.D.

Having proved this lemma, we return to our proof that A/R is densely
representing. Let B/K € of(L/F) be a crossed product A(L ®-K/K, G, d),
where K is a field. If 0# s € L[M]°, choose ¢ : L[M]— L ®:K as in the
lemma. ¢ extends to a unique mape¢ :L[M](l/s)—> L ®-K. Denote by
¢':R(1/s)— K the restriction of ¢ (recall R = L[M]°). By our choice of ¢,
A(1/s)®, K = B. Thus ¢’ realizes B and we have proved the proposition.

With 3.16 in hand, we can invoke 3.10. The following theorem is the result. Its
proof being easy, we will omit it.

THEOREM 3.18. Let L/F, G, and M = M(G) be as above. Then the following
are equivalent:

(@) n(M)=[0].

(b) Q(L/F, M) is retract rational.

(¢c) A(L/F) has the lifting property.

(d) For all local commutative algebras T, M, the natural map
Br(L Q¢ T/T)— Br(L Q¢ (T/M)/(T/M)) is a surjection.

The curious thing about 3.18 is that one of the conditions, (a), is independent
of L/F and only depends on G. Later on, we will use a Brauer group
computation to add two more equivalent statements, namely:

(e) For all local F algebras T, M and ali G-Galois extensions S| T, the naturdl
map Br(S/T)— Br((S/MS)/(T/M)) is a surjection.
(f) All the Sylow subgroups of G are cyclic.

There is a relative version of 3.18 which we can also state. Let G be a finite
group, and N C G a normal subgroup. Consider M,(G/N)=M' to be a G
module, and let f: My(G)— My(G/N) be the canonical map. f induces an F
algebra map ¢ : L[M]° — L[M’]°. Suppose L/F is a G Galois extension, and
K C L is the subfield associated with N.

THEOREM 3.19. If M, M', N, G, L, and K are as above, then the following are
equivalent :

(@) n(f)=[0].

(b) ¢ : L[M])° — L[M']° factors rationally.
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(c) Suppose T, P is a commutative local F algebra, and set E = T/P. Then the
image of the natural map Br(L Q:T/T)—Br(L QE/E) contains
Br(K QrE/E).

ProoF. Let n=|N|. Set «'(K/F)C A(L/F) to be the subclass of all
A/R € o (L/F) which are split by K @« R. In other words, B/E € o'(K/F) for
E a field are exactly algebras M, (B’) where B’ = A(K @<rE, G/N, ¢).

Set R’ to be the F algebra L[M’']¢, $'=L ®R'. If d(oN,7N) is the G/N
2-cocycle which generates M' = M,(G/N), denote by d'(o, 7) = d(oN, N) the
induced G 2-cocycle. Set A = A(S'/R’, G,d"). Note that K @R’ splits A.

We claim that A/R’ is a densely representing object for «/'(K/F). But,
[A]=[A'] where A’=A(K ®«<R'/R’, G/N, d). Also, R’ is equal to K[M']®'".
Thus by 3.16, A’/R’ is a densely representing object for #(K/F). If B/E €
A'(K/F) for E a field, write B = M,(B’) where B'€ #(K/F). For any
0#s€R’, choose ¢ :R'(l/s)>E such that A'(l/s)Q.E =B’'. Then
A(1/s)&QE = B, and the claim is proved.

Next, set R =L[M]°, S=L[M] and A,=A(S/R,G,c) where ¢ is the
cocycle generating M = M,(G). Note that if ¢': L[M]— L[M’] is the induced
G preserving map, then d'(o,7)=d(oN,™N)=¢'(c(0, 7)). Hence A; Q. R’ =
A. All in all, 3.10(b) can be applied to show that (a) and (b) are equivalent to
(4'(K/F), 4(L/F)) having the relative lifting property. And (c) is clearly
equivalent to this same property. Q.E.D.

§4. Cyclic extensions of 2 power order

In [23] it was seen that cyclic Galois extensions of 2 power order behave
differently from odd order cyclic extensions. In this section we will further
explore this difference. We will be able to use the machinery of the first three
sections to settle some questions in this area. In turn, some of the machinery of
those sections was motivated by the application here. In particular, we refer to
4.19.

To turn to specifics, let C, be the cyclic group of order ¢ =2'. Let F be a field
and p = p(gq) a primitive gth root of unity (p = 1 if F has characteristic two). We
already know ([23], p. 257) that if F(p)/F is cyclic, then all C, Galois extensions
lift. What about the converse? If F(p)/F is not cyclic, is there a counterexample
to lifting? In [23] this sort of question was attacked using the related approxima-
tion problem and examples from algebraic number theory. But this approach
cannot fully decide the issue; there are global fields F such that F(p)/F is not
cyclic but such that all relevant local-global problems are solvable. In fact, in
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4.13, we characterize such F. Nonetheless, we can use the machinery of the first
sections to show that there is a counterexample to lifting for such F.

To further study these cyclic extensions, we again turn to algebraic number
fields for examples. In doing so, one discovers an interesting phenomenon.
Suppose F is a global field and F' is one of its completions at a prime of F.
Assume that L'/F'is a G Galois. Of course, L' may not pull back to a G Galois
extension L/F. However, L' L' can be thought of as a Cs, extension L"/F’ via
the induction operation of [23]. It can be shown that the C,, extension L"/F’
pulls back to a (5, extension of F.

This phenomenon raises two questions. Does the same thing happen for lifting
C, Galois extensions? Also, is this phenomenon special to number fields or does
it hold for all C, Galois extensions? We prove two sorts of results. First, that for
many fields the corresponding lifting problem is solvable. And second, that it is
not always solvable.

Along the way, we will develop enough understanding of C, Galois extensions
to give new, perhaps more elementary, proofs of some relevant facts about C,
extensions of number fields. Included is another proof of Wang’s counter
example and a result that is a version of the full Grunwald-Wang Theorem.

Before investigating these questions directly, we must make a series of
preliminary comments. The first such topic we mention is cyclic algebras. In [24],
it was shown that cyclic algebras behave well. Unfortunately, the following easy
result was not precisely proved there. We do so here for easy reference. Before
stating this result, we specify some notation in a situation that will often recur. If
K is a field, and v is a valuation on K, we will denote by K, the completion of K
with respect to v. If vy, -+, v, are a set of valuations on K, then K; will denote
the completion of K with respect to v;.

PROPOSITION 4.1.  Let o be a generator of C,.

(a) Suppose T, M is a local F algebra with T/M = K. Assume S/ T is C, Galois,
and set L =S QK. If A =A(L/K,0,a) is a cyclic algebra, there is a cyclic
algebra B = A(S/T. 0,a’) such that BQK = A.

(b) Suppose vy, - - -, v are inequivalent real valued valuations on K. Let L /K be
a C, Galois extension and set L, = L @« K.. If A; = A(L:/K;, 0,a:) are cyclic
algebras, there is an algebra A = A(L/K, 0, a) such that A @« K; = A, for all .

PrOOF. Part (a) is trivial. As for (b), note that one can use elementary
arguments, or [23] p. 99, or [31], and conclude that there is an £ > 0 such that for
any of the v, if ai € K, satisfies v;{a; —a?)<e, then
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A(Li /K, o, a;) = A(L:K;, o, a).

Use the weak approximation theorem (e.g. [3], p- 48) and choose a € K such
that v;(a —a;)<e for all i. A =A(L/K,0,a) is the algebra required by (b).
QE.D.

Later on, we will need information about some approximation questions for
abelian crossed products. The next result will settle the global field case of what
we need. Let L, K be global fields, and L/K a Gaiois extension with Galois
group G = C, P C, where q is a power of 2. The following theorem gives precise
conditions when elements of &/ (L/K) over local fields pull back to an element of
A(L/K) over K itself. Note that the condition is given in terms of Hasse
invariants (e.g. [21], p. 276).

THEOREM 4.2. Let vy, -+, v be distinct valuations (or primes) on K, and set
L =L @« K. Suppose A; = A(L;/K;, G, ¢;) has Hasse invariant m;/2q. There is
an A = A(L/K, G,c) such that A, = A QK. if and only if one or both of the
following conditions hold:

(i) For some v not among the v, L Q« K, is a field.

(ii) The sum of the m; is divisible by 2.

ProoOF. The Brauer classes of the form [A(L/K, G,c)] are exactly those
whose Hasse invariants at any valuation w have the form r/n where n is the
local degree of L at w. Also, of course, the Hasse invariants of any Brauer class
must sum to zero. Set m/2q to be the sum of the Hasse invariants of the A;. By
Tchebotarev density (e.g. [12], p. 168), there are infinitely many primes not
among the v;’s such that L has local degree g at those primes. If both (a) and (b)
are false, and A exists, then the sum of the Hasse invariants of A at primes not
among the v has the form r/q and (m +2r)/2q cannot be in Z, a contradiction.
Conversely, if (a) holds, choose v not among the v; such that L @« K, is a field.
If (b) holds, let v be such that L has local degree q at v and v is again not among
the v;. Let @ € Br(K) have Hasse invariants — m/2q at v and m; /2q at v;. a will
have a representative A asrequired. Q.ED.

It will be convenient to recall now some facts about the Brauer group of a
rational function field K(¢) (see [9], [3]). Let P C K[t] be a prime ideal, set
K, = K[t]/P, and let Gp be the absolute Galois group of K. That is, G, is the
Galois group of K3/Kp, where K3 is the separable closure of K,. We denote by
x (G5») the group of continuous homomorphisms Hom, (Gr, Q/Z), where Gy has
the Krull topology and Q/Z has the trivial topology. If f € x(Gs), then
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N = kernel(f) is such that G»/N is finite and cyclic. If L is the fixed field of N in

», we say that f defines L.

The Brauer group Br(K(t)) is described via the x(G:)’s, at least away from
the characteristic of K. Suppose p is the characteristic of K. If A is any torsion
abelian group, set A’ to be A if p =0 and set A’ to be the p prime part of A if
p # 0. There is an exact sequence describing the Brauer group of K(¢) as follows:

4.3) 0—Br(K)Y—=Br(K(t)) =P x(G:) =0

where the direct sum is over all primes P C K[t]. For [A] € Br(K(t)), we denote
by x»(A) the image of [A] in x(G»). To work with (4.3), it is necessary to be
able to compute the maps x». This is done via an exact sequence for complete
fields. Let L be a field of characteristic the same p (for notational convenience).
Considering the Laurent series field L((s)), we have (e.g. [30], [3])

4.4) 0—Br(L) —Br(L((s))) = x(G)Y—0

where G is the absolute Galois group of L. Moreover, the maps in (4.4) are
functorial with respect to extensions of L. Finally, the map . has the following
properties. If M/L is a cyclic Galois extension, with Galois group generated by
o, then

f=x (AM((s))/L((s)), 0> 8))

defines M and f(¢)=1/n, n =[M : L]. On the other hand, if u € L((s)) is a unit
in the power series ring, then

xe (AM((s))/L((s)), o, u))=1.

Returning to the field K(t), let P C K[t] be a prime. Denote by K(t), the
completion of K(t) at P. K(¢), is a Laurent series field over Ky, say K»((s)). The
map xr is just the composition of the map Br(K(t))— Br(K(¢)-) and the map
X%, : Br(Kr ((s)))— x (G»). This fact, along with the functoriality of (4.4), has the
following consequence important to us. We will omit the easy proof.

LemMA 4.5. Suppose [A] € Br(K(t)) and fr = x»(A). Let f» define the exten-
sion Ly /Kp. Assume L/K is such that L(t) splits A. Then L @« K» contains an
isomorphic copy of Lp. In other words, any field amalgamation LK contains L.

As a final preliminary topic, we mention some facts about the induced Galois
extensions defined in [23]. Suppose K is a field and L/K is Galois with group G.
If G’ is a finite group containing G, then there is an induced Galois extension
Indg (L/K) which has Galois group G’ over K. As a K algebra, Indg (L/K) is
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just L@ - L. Asa K[G'] module, Ind& (L/K) is just K[G'] ®«(c) L. Recall
further that, if L/K is any G-Galois extension of a field K, then L/K has the
form Indf,(L’/K) where L' is a field, and H = Gal(L'/K). H is called a
decomposition group of L/Kj; it is unique up to conjugation. In the next lemma
we point out how decomposition groups and the Galois correspondence mix
together.

LemMa 4.6. Let K be a field, and L /K Galois with group G and decomposition
group H. Assume N C G is a normal subgroup and that L' is the fixed ring of N.
Then HN/N is a decomposition group for L'/K. Also, let L, and L be the field
direct summands of L and L' respectively. Assume that L,/K has Galois group H.

Then L is isomorphic (as a K algebra) to the subfield of L, corresponding to
HNN.

PrOOF. A decomposition group of L’/K can be described as a subgroup of
G/N fixing some primitive idempotent of L'. Let e €L be a primitive
idempotent which H fixes. Let ni,- - -, n, be coset representatives of H N N in
N. Set

f=n(e)+ - -+n(e).

Then f is a primitive idempotent of L', and HN is exactly the subgroup of G
fixing f. That is, HN/N is the subgroup of G/N fixing f. This proves the first
claim.

L, is the field Le. There is an injection from L’f to L, given by sending x to xe.
Every element of this image must be fixed by H N N, since L' is fixed by N and e
is fixed by H. Checking degrees, we have that the image is exactly the fixed field
of HN N. Q.E.D.

We can now turn to the main body of this section, an examination of C
extensions for g a power of 2. We fix some notation that will remain unchanged
throughout this section. As always, F is the underlying field. For convenience, F
will be assumed not to have characteristic 2. Set p = p(q) to be a primitive qth
root of unity. F(p)/F will always be noncyclic with Galois group H. Let n be the
order of H. H is generated by o, 7 where o(p) = p ' and 7(p) = p™ for some m.
The map = and the integer m will be fixed according to the following lemma.

LEMMA 4.7. We may choose 7, m such that m — 1 is a power of 2. Also, if s is
the order of m modulo q, we may assume m* —1 = kq where k is odd.

Proor. It suffices to show that if s divides q/4, then there is such an m with
m# —1(q). This we prove by induction on q. If g =8, m =5 will do, as
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5°—1=8-3. For general g, suppose first that s #2. Choose m =1+ 2’ such that
m has order s/2 modulo q/2, and such that m*” =1+ k(q/2) where k is odd.
Now

m’ =(1+k(q/2) =1+kq +k*(q*/4) =1+ (k + k*(1/4))q.

We note that m has order s modulo q and that k + k*(q/4) is odd. This finishes
the case s#2. If s =2 set m =1+ q/2 and note that m* =1+ (1 + q*/4)q.
Q.E.D.

If F(p)/F were cyclic, then C, extensions over F could be described via the
generic constructions of [23]. The basic idea is to adjoin p, and then to describe
the resulting extensions. This method can also be used in our case, where F(p)/F
is not cyclic. The following theorem is the result. But first, let us recall a bit of
notation from [23]. If R is a commutative ring, and f(y) € R[y] is monic, we set
R{f(y)} = R[y)/(f(y)). The image of y in R{f(y)} is called a canonical element.
If R is a commutative F algebra, then o and 7 act naturallyon R'= R &= F(p).
For r ER’, set N, (r) = ra(r),

M. (r)=7"" ()" ()" - 1™,
and

N,.(r)=r(r)-- - ' (N)a()r(a () - 777 (o (r)).

THEOREM 4.8. (a) Assume T is a local F algebra and S|T is a C, Galois
extension. Consider S'=8 QrF(p) and T'=T X:F(p). S'IT is Galois with
group C, D H. §' = T'{y? — a}, where the canonical generator a € S’ satisfies the
following: t(a)=a™b™*, and o(a)=a 'z where b,z €(T")*, o(z)=z and
N, (b)=17(z)/z™. Also a = M,(b)=(c(w)/w)z"” for some w € (T")*.

(b) Conversely, suppose R is a commutative F algebra, R' = R Q+F(p), and
b,z €(R")* satisfy o(z)=z and N,(b)=1(z)/z™. Set a=M,(b). If S'=
R'{y® —a} and a €S’ is a canonical generator, then one can define o(a)=
a”'z™ and 7(a)=a"b™" so that S'=S Rz R' where SR is C, Galois.

PrOOF. We prove (b) first. If S’ is as given, we must check that o and 7 are
well defined on S'. But

7(@a)=7(M, (b))=M.(b)"b """ =a"b ™™ =(a"b ") = (r(a))’,
so 7 is well defined. Now

N, (M. (b)) = M. (7(z)/z")= 27",
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SO

o@)=a'z7" =(a"'z7) = (0(a))",
and o is well defined. Also,
(@)=a™M,(b)* =a(@a™ M, () *)=a(@a*M.(b) *)=a,
and
c@)=c(@'z7 ) =az"e(z)* =0
Hence o, 7 have orders 2, s respectively on S’. We check that
or(@)=0c(@"b™ )=a "z *"a(b)* =a b r(z)* =1(a'z27*) = 1(0(a)),

where we have used that N, (b) = 1(z)/z™. We conclude that ¢, 7 commute on
S’. In all, the Galois group of R'/R extends to S’. Arguing exactly as in [23], p.
258, the Galois group of S'/R’' commutes with this extension. If S is the fixed
ring of o and 7 in §’, then S/R is as desired.

As for (a), let S/T, $' and T’ be as given. Since T is local, T’ is semilocal and
the Kummer description of C, extensions can be applied to S'/T". In particular,
if n generates C,, then S'= T'{y? — a’} where the canonical element o' € S’
satisfies n(a’) = pa’. The maps ¢ and 7 extend to S’ via their action on F(p),
and commute with . Since ™ = 97, 7(a’) = a'"b’ where b’ € (T")*. Similarly,
g@)=a''z' for z'€(T')*. As o’(@)=a’, o(z')=2z". As T°(a’)=a’, we
calculate that M, (b")=a’*. If we set a =(a"), a=a™, b=b"",and z = 2",
then o(a)=a 'z 7(a)=a™b . Finally 7(o(a))=o(7(a)) implies that
N, (b)* =(r(z)/z™)". In other words, N, (b)=(7(z)/z™)8 where 8" =1. If we
choose 8’ a power of & such that § =(8')’, we have N, (bd')=1(z)/z™. Since
m —1is a power of 2, (m* — 1)/(m — 1) is divisible by k and so M, (b6") = M, (b).
In all, we can change b to b8’ and completely satisfy the requirements of (a).

Q.E.D.

Consider now Theorem 4.8 applied to a C, extension L/K where K is a field.
The point of 4.8 is that L/K is determined by a solution of the equations
N,(b)=7(z)/z™ and a(z) =z, in K' = K ®rF(p). Conversely, such a solution
determines an extension L/K. As m —1=2", we can rewrite these equations as
N, (bz" ") =1(z)/z where o(z)=2z If ¢ = bz" ", then N,,(c)=1. Con-
versely, if N,.(c)=1, then by Hilbert’s theorem 90 there is a z such that
N,(¢c)=17(z)/z where z is o fixed. Setting b =cz""™"? we have N, (b)=
7(z)/z™. All of which says that solving our original equation is almost equivalent
to finding elements of K’ of norm 1.
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In old work of Dickson, repeated in [2], elements of norm 1 were seen to be
key elements in a description of K'/K crossed products. We are about to derive,
using essentially this observation, a very useful connection between C, Galois
extensions and K'/K crossed products. In particular, we will show that lifting
one is equivalent to lifting the other.

To be precise, let L/K be a C, Galois extension and let K, be the o fixed
subring of K'. The element z of Theorem 4.8 can be used to define a quaternion
algebra A(K'/K,, o, z) which we will call D(L/K). The next lemma will show
that D(L/K) is well defined. In this lemma, let Dx be the set of isomorphism
classes of quaternion algebras B/K;, split by K', and such that the 7 transform
B’ of B is isomorphic to B.

LEmMMA 4.9. The mapping L/K — D(L/K) is well defined. Every element B
of Dg is of the form D(L/K) for some. C, Galois extension L/K. If B =
A(K'/K,,a,2z)= D(L/K), then thereis a b € (K')* such thatb, z describe L |K.

PrOOF. We assume the notation of Theorem 4.8 and its proof, with R and T
replaced by K. Note first that

AMK'[Ki, 0,2)=MK'[Ki,0,2")  where 2’ = a(a(a)).

Any other choice for a has the form a‘w, where ¢ is odd and w € (K')*. Now
a'w(o(a'w))=(z')N,(w), and

AMK'IKy, 0, 2"y = AK'IKy, 0, (2') N, (w)).

Hence D(L/K) is well defined.

Suppose B = A(K'/K}, 0,2z) is in Dk. Since B" = B, 7(z)/z = N, (¢) for some
¢ €(K")*. Setting b = cz""™”, we have N,(b)=7(z)/z™. This b, z define a C,
extension L/K such that D(L/K)= B. To finish the lemma, we note that if
z'=N,(w)z for w EKT, and if « € L’ is the canonical generator as in the proof
of 4.8, then @’ = aw ™ is a canonical generator of L' viewed as K'{y¢ — aw ™},
and

o@)=a''z"% r@)=a™(br(w)wm)" Q.E.D.

To the quaternion algebras in Dx one can associate a set of K'/K crossed
products. More properly, let Ax be the set of isomorphism classes of crossed
products A(K'/K, H, c). To each A € Ax we associate B{A ) € Dy which is just
the centralizer of K in A. If B € Dx, then the fact that B” =~ B implies that [B]
is in the image of the Brauer group of K and so that B = B(A) for some
A € Ak.
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Though it is not needed for our arguments, the above maps can be summar-
ized as follows. Recall, from [2], that A € Ak can be described via u, ¢, ¢’ such
that N, (u)=1, N,(u) = 7(c)/c, and N, (u) = a(c')/c’. If b, z describe L/K, and
D(L/K)= B(A), then one of the u’s describing A is the element bz ™" of
norm 1.

Though the maps we have defined are not bijective, they are “equivalences”
when it comes to lifting.

THEOREM 4.10. Let T, M be a local F algebra, let K =T/M, and set
T' =T Q¢ F(p). Denote by T, the o fixed subring of T'. Assume L /K is C, Galois,
A =AK'|K,H,c), and D(L/K)= B(A). Then the following are equivalent:

(a) There is a C, Galois extension S/T such that S QK = L.

(b) There is an Azumaya algebra A’ = A(T'/T, H,c") such that A’ Q- K = A.

PrROOF. Assuming (a), use 4.8 to describe S in terms of b’, z' € (T')*. If b,
z € K’ are the images of b, z’, then b, z describe L/K. Set B' = A(T'/T), 0, 2").
Since 7(z')/z’' is a ¢ norm from T, [B'] is the image of some [A"] € Br(T).
[A” ®r K] may not equal [A], but they must be equal after tensoring up to K.
Hence [A"®:K]=[A][D] where D has the form A(K./K,7,d). By 4.1,
D =D'®rK where D' = A(T\/T, 7,d’). The Brauer class [A"][D'] € Br(T) is
split by T’ and is a preimage of [A]. It follows that there is an algebra
A'=AT'/T,H,c') such that [A'] is a preimage of [A]. Since A’ and A have
equal degrees, we have A’ @rK = A and (b) is satisfied.

Next assume (b), and set B’ to be the centralizer of T; in A’. We can write
B'=A(T'[|T,, 0,2'). Modulo M, z' has the form zN,(w) where b, z describe
L/K. Choosing w' € T’ to be a preimage of w, we can change z' to z'N, (w') and
so assume that z' is a preimage of z. Now 7(z')/z' = N, (c¢') for some ¢’ € T". Set
b'=c'z"""™"? so that N, (b’)=7(z')/z'". Modulo M, b’ and b have the same o
norm. Arguing exactly as before, we can assume b’ is a preimage of b. We can
now use b’, z' to define a C, extension S/T which satisfies (a). Q.E.D.

To put it all together, 4.10 says that the lifting problem for each L/K € €((,)
is equivalent to the lifting problem for some A/K € #(K'/K), and vice versa.
When D(L/K)= B({A), and this equivalence holds, we write L/K ~ A/K and
say that L/K is equivalent to A/K.

We next observe that this equivalence also applies to approximation prob-
lems. Though we have decided not to emphasize approximation problems in this
paper, the next result is necessary in order to show how the equivalence can also
shed light on algebraic number fields.
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THEOREM 4.11. Let K be a field with valuations v, - -, v.. Suppose L, [K; are
C, Galois extensions and A, = A(K' Q«Ki/Ki,H,c:) are such that L;/K; ~
Ai[K;. Then the following are equivalent:

(2) There is a C, Galois extension L/K such that L, = L Q«K: for all i.

(b) There is an A = A(K'/K, H,¢) such that A K« K; = A,.

ProOF. Suppose (a) holds. Let L/K be given by b, z€ K'. Set Ki; =
K, ®« Ki. By the same argument as in 4.10, we can find A"/K € «(K'/K) such
that A" R« K, = A; Qx Kii. Again, there are C = A(K.,/K;, 7,¢:) such that
[A]=[A"®«Ki][C]. By 4.1, there is a C = A(K\/K, 7, ¢) such that C Q« K, =
C.. Now [A"®kC]=[A'] where A'=A(K'/K, H,c). We conclude that A
satisfies (b).

Conversely, assume (b). Suppose b;, z; € K define L;/K;. Arguing as in 4.10
again, there are z"€ K, and b" &€ K’ such that N, (b")=7(z")/z"" and z" =
zZiN, (¢;) for ¢; € K= K’ ®« Ki. By the last sentence of Lemma 4.9, there are b;
such that the pairs b, z" define L;/K;. Of course, b;i= b"o(d:)/d: for some
d; €K}.Form R' = K'[x, I h € H](1/t) where t is the product of the x,’s and H
acts on R’ in the usual way. Set R to be the invariant ring of H on R'. As has
been observed before, R has the form K[y, - -, y.](1/t). Use "o (x,)/x; and z"
to define the C, Galois extension S/R. There are ¢;: R— K; such that
S ®., K: = L;. Arguing exactly as in [23], p. 279, there is a ¢ : R — K such that if
L =S ®,K, then L satisfies (a). Q.E.D.

Theorems 4.10 and 4.11 can be quite useful because & (K'/K) can be easier to
understand than €(C,). As a first example of this, we provide the converse to
3.13. For this theorem, we will allow F to have characteristic 2.

THEOREM 4.12. Let A be a finite abelian group of exponent 2'm where m is
odd. Assume V is a finitely generated F[|A] module such that A - Homg(V, V)
is injective. Then F.(V)" is retract rational over F if and only if either F has
characteristic 2, or F(p(2"))/F is cyclic.

ProOF. What has to be shown is that if F has characteristic not 2 and
H = Gal(p(2")/F) is not cyclic, then €(A ) does not have the lifting property. But
if it did, €(C,) would have the lifting property for q =2" ([23], p. 265). This
would imply by 4.10 that of (F(p(q)/F) had the lifting property. Hence by 3.18,
n(M.(H)) =[0]. But then 7n(Jy)=[0] (2.7). This last statement is false for H
noncyclic ({6], p. 183, mentioned in 2.6 above). Q.E.D.

Let me briefly mention an alternate proof for 4.12. As argued, it is equivalent
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to the question of whether m(Jy)=[0]. Of course, this last statement is
independent of F and only depends on H. But arguing backwards, we can
conclude that n(Jx) # [0] from the counterexamples in [23] for the case F = Q
(i.e., Wang’s counterexample).

Another consequence of 4.11 is a version of the full Grunwald-Wang
Theorem for number fields. Theorem 4.11 reduces the approximation problem
for C, extensions to the same problem for abelian crossed products. Theorem
4.2 answers this equation completely for these crossed products. The combina-
tion, then, is a complete answer as to when local C, extensions can be pulled
back to global ones. There seems to be little point to explicitly stating this
version in a separate result, but one aspect should be noticed. The behavior of a
local C, extension depends completely on the parameter we have labelled z.

We will, however, draw two more limited consequences from the combination
of 4.11 and 4.2, both well known facts in algebraic number theory. First, we can
recover Wang’s counterexample. If F = Q, p = p(q) for ¢ a power of 2 bigger
than or equal to 8, then Q(p) R Q, is a field for the prime p =2 and no other. It
follows from 4.2 that if A/Q, € 4 (Q(p)/Q) s a division algebra, then A cannot
pull back to Q. Hence some C; extension also cannot pull back.

More generally, the next proposition will give necessary and sufficient
conditions on a global field K so that ail local-global approximation problems for
C, extensions are solvable. The proof, being an easy combination of 4.11 and
4.2, is omitted.

ProprosITION 4.13. Suppose K is a global field. Then the following are
equivalent:

(a) For all primes v of K, K(p(q))®« K. is not a field.

(b) For all primes v, - -, v, of K and all C, Galois extensions L; /K., there is a
C, Galois extension L[K such that L QxK; = L..

In the beginning of this section, we mentioned that, over global fields, there
was an interesting interaction between lifting questions and the induction
operation on Galois extensions. In order to explore this, we first sort out the

relationship between the induction operation and the equivalence of Theorem
4.10.

LemMA 4.14. Let G = C, be the cyclic group of order q =2, viewed as a
subgroup of G' = C, where s =2'q =s'q. Let p = p(q) and p' = p(s) where we
assume p” = p. Suppose L/K € €(C,), A/K € 4(K'|K), and L/K ~ A/K. Set
L,=1Indg(L/K). Then L,/K ~ A,/K where A, € L(F(p')®K/K) and [A]=
[A.] in the Brauer group.
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ProoF. The automorphisms o, 7 € H = Gal(F(p)/F) extend to automor-
phisms o, r € H' = Gal(F(p')/F) where a(p’)=p'~" and 7(p') = p'". The proof
of Lemma 4.7 shows that o, = generate H' and that =, m satisfies 4.7 with respect
to s.

Suppose b, z € K’ describe the C, extension L/K. Thatis, if L'= K'Q«L,
suppose L'= K'{y? — a} where the canonical element « € L’ satisfies o(a)=
a”'z7 and r(a)=a™b*. Now set k"= F(p")®+K and L" =L, Q«K". Then
L" has the form K"{y® —a'}. Also, as a K" algebra, !" is isomorphic to

(L' Qe KB QKD - D(L'QxK”) (s times).

Identifying all these expressions, we find we can write the canonical element, 3,
of 1" as

B=(ap'a, - (p) 'a).

We can compute that o(8)=8"'z" and 7(8)=8"b" . In other words,
b, z € K" describe L,/K also. The lemma follows. Q.E.D.

Let K be a global field, v,,- -+, v, some primes of K, and let L,/K; be C,
Galois extensions. If G = C,, G' = C,,, and L} = Indg(L;/K;), then 4.2 and 4.11
show that there always is a C,, Galois extension L'/K such that L;= L' QK.
As noted before, we are interested in whether this is also true for all fields K.
Also, we are interested in the corresponding lifting problem. That is, suppose T,
M is a local F algebra, K = T/M, and L/K is Galois with group G = C,. Does
Indg(L/K) lift to T?

In order to consider the lifting problem, we must ask when, in general,
elements in o (K'/K) can be lifted. Let F, p, o and 7 be as always. Set F, to be
the o fixed subfield of F(p), and set F; to be the 7 fixed subfield. For any field
KDF weset K, =F, QK. If A/K € d(F(p)/F) is a tensor product A;® A,
such that K; is a maximal commutative subring of A;, we say that A decom-
poses. Note that by 4.1, if A decomposes then it can be lifted over any local F
algebra. A similar property holds for the approximation problem.

It will be useful to have the following criteria for when A decomposes.

LeEMMA 4.15. (a) Suppose A /K € (F(p)/F) has the property that [A] is a
product of [Ai] where each A, is split by a cyclic extension L; [K and L; C K'. Then
A decomposes.

(b) Suppose A/K € A(F(p)/F) and A'/K € 4 (K(p)/K) are such that [A] =
[A']. If A" decomposes with respect to K(p)/K, or K(p)/K is cyclic, then A
decomposes.



206 D. J. SALTMAN Isr. J. Math.

PrROOF. We begin by proving (b). Suppose K is the field direct summand of
K.. Then K(p) is the field direct summand of K| ®x K;. Assume, first of all, that
K (p)/K is not cyclic. Then K(p)= K{ R« K:. If A’'/K decomposes with respect
to K(p)/K, then A’ = A; @« A; where K’ is a maximal subfield of A}. Butif K
splits A, then so does K. In other words, [Af] =[A:] where A; is a crossed
product with respect to K;. We have that [A]=[A][A:]. Checking degrees, we
get that A = A, Q@xA: and A decomposes.

Next, assume that K(p)/K is cyclic. H' = Gal(K(p)/K) can be considered to
be a subgroup of H = Gal(F(p)/F).If H' D (o), then H' = (o) and K(p) = K,. If
H' N (o) = (1), then 4.6 shows that K(p) is isomorphic to a subfield of K,. Hence
either K, or K, splits A and clearly A decomposes.

Turning to (a), let A and the A;, L; be as given. Set L to be the field direct
summand of L;. Then L splits A;, LiC K(p), and L/K is cyclic. All in all, we
may assume that F = K. With this identification, then o, 7 € H = Gal(K(p)/K)
have their usual meaning and the L; C K(p) are fields. By part (b), we may
assume K(p)/K is not cyclic. Enlarging L; if necessary, we may assume
LK; = K(p) for j =1 or 2. In other words, L; @« K; is a direct sum of copies of
K(p). For simplicity, we take J =1, the other case being similar. If we write
A =A(L; /K, n,¢), then

A R« K= AL Q«Ki/K\, 1, ¢).
Since L; ®« K, is a direct sum of copies of K(p),
[A: @« Ki] = [A(K(p)/ K}, 0,¢)]
(this is an easy calculation) and so
[Ai] = [A(KY/K, o, )] [AK /K, 7, d)] for some d € K*.

In other words, each [Ai]=[Ai][Aiz] where K; splits A;;. Set [B;] to be the
product of all the [A;;]'s. Since K; splits B;, we can assume that B; =
A(K; /K, n, ¢;) for the appropriate n € H. Also, {A]=[Bi][B:], and so, checking
degrees, we have A = B, Q« B. Q.E.D.

As mentioned before, Theorem 4.10 is useful because sometimes &/ (F(p)/F)
is easier to deal with than €(C,). In particular, the machinery of the Brauer
group can be used to show that certdiin A/K € d(F(p)/F) decompose. The
consequence is that we get lifting results for o (F(p)/F), and hence for €(C,).
The next proposition contains some of these Brauer group resuits.

PROPOSITION 4.16. Let F(p)/F be as above, and choose p' such that p” = p.
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(@) If K is any local or global field containing F, and A /K € «(F(p)/F), then
My(A)K € A(F(p")/F) decomposes.

(b) Now let K be an arbitrary field containing F. If for every A/K €
A(F(p)/F, M:(A)) decomposes as in (a), then the same is true for the rational
function field K(t).

ProoOF. First note that in both (a) and (b), by using 4.15 (b), we may assume
that K = F and thus that K(p)/K is not cyclic. Turning to (a), suppose K is a
local field. Assume that

a,7€ H =Gal(K(p)/K)
are as usual, and extend these maps to
o, 7 €H' = Gal(K(p')/K)

just as in the proof of 4.14. Write K(p') = K{@ K in the usual way. Note that
[K(p): K]=[Ki:K].Since K is local, if A is split by K(p), it is split by K!. So if
A/K € d(K(p)/K), then

MyA)= A'QxMAK)  where A'= MK/, 1,¢).

Thus M:(A) decomposes.

Next, suppose that, in (a), K is global. Let vy, - -, v, be the primes of K where
A ramifies. Let K; be the completion of K at v, and K(p')= K| R« K} the
decomposition of K(p') as above. Set A, = A @« K; and K;; = K;®« K. By the
above paragraph,

Mz(Ai) = Ai, ®K, Aiz where K, SplitS A,;,».

Let m;;/m be the Hasse invariant of A,;. For j = 1,2, set m;/m to be the sum of
the m;;/m over all i. Then (m, + m;)/m is in Z, since it is the sum of the Hasse
invariants of A. Also, as A, is split by K., which has degree 2 over K., we have
that m./m has the form r./2. By Tchebotarev density, there are infinitely many
primes where K and K have local degree 2. In particular, there is such a v,
not among the other v;’s. Let [A;] € Br(K) have Hasse invariants m;;/m at v,
and r,/2 at v.... Then [A;] is split by K and we can write Mx2(A)= A, R« A,.
This finishes (a).

To prove (b), we use the exact sequence (4.3), where P C K[t], x,, G,, K, etc.
have the same meaning as in (4.3). Suppose A/K(t)€ #(K(p)/K). Set fp =
xr(A), and let f» define the cyclic extension L, /K;. Since K(p)(¢) splits A, L» is
a subfield of K(p)Qx K». That is, L, C Ki(p). By using 4.6 it is not hard to see
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that L, C L@« K, where L;C K(p) and L;/K is cyclic. Consider the cyclic
algebra B = A(L /K, n, g) where 1 generates the Galois group of L;:/K and
g € K[y] generates the prime ideal P. If Q is any other prime, then by the
discussion after (4.4), we can compute that xo (B)=1. On the other hand, if L%
is the field amalgamation of L and Kp, then L, C L% and x»(B) = f} defines
L%K;. It follows that xp(B')=f» for some r.

Performing the above construction for all P such that x» (A ) # 1, we conclude
that there are [A )], - - +,[ A~ ] such that each A, is split by some L;/K where L;/K
is cyclic, L, C K(p), and xo [A][A.]™" - - - [A.]"") = 1 for all q. This implies that

[A]=[A4]---[An][B]

where [B] is in the image of Br(K) and is split by K(p)(¢). If B = B’ @« K(¢),
then by our assumptions, M,(B") decomposes. By applying 4.15 we conclude that
M,(A) decomposes. Q.E.D.

With 4.16 in hand, and using 4.10 and 4.11, we can now conclude some
approximation and lifting properties for C, extensions. We will limit ourselves to
stating the lifting result because we believe it to be more natural.

CorOLLARY 4.17. Let K D F be a field of the form K.(t:,- - -, t,) where K, is a
local or global field. Suppose T, M is a local F algebra and TIM =K. If L/K isa
C, Galois extension, then L @ L lifts to a C,, Galois extnsion of T.

In [24], the lifting results of [23] were used to prove surjectivity results for the
map from the Brauer group of a local ring to its residue field. However, the
results of [24] were limited by the impossibility of lifting all 2 power cyclic
extensions. The next corollary is an addition to corollary 3.6 of [24]. We omit its
proof because it is a straightforward combination of 4.17 and the methods of
[24].

CorOLLARY 4.18. Let T, M be a local F algebra. Set K = T/M. Assume
K = K,(t) where K, is a local or global field. Then the map Br(T)— Br(K) is a
surjection.

Corollary 4.17 suggests that it would be worthwhile to ascertain whether this
lifting property was special to the fields involved or was generally true. We next
will observe that it is, in fact, special. The machinery of §2 will allow us to
construct a C, extension L/K such that L - - - @ L does not lift to any abelian
extension.

THEOREM 4.19. Suppose q, p are as above, and that F(p)/F is not cyclic. Then
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there is a C, extension L/K such that the following holds. Let A be any finite
abelian group containing C,, and set L' = Ind¢, (L/K). There is a local F algebra
T, M with T/M = K such that L' does not lift to T as an A-extension.

ProoOF. First off, elementary group theory shows that it suffices to consider
A = C, where s =q2". Theorem 4.10 and the calculation 4.14 show that it is
equivalent to construct A/K € o (F(p)/F) such that no M,(A) lifts to an
element of o (F(p(s))/F). The choice of A is the obvious one. Let

H'=Gal(F(p(s)/F),  H =Gal(F(p)/F)

and set N to be the Z[H] module M,(H). Let K be the field Q(F(p)/F, N). Use
the “‘generic” cocycle ¢ of N = M,(H) to form the crossed product

A =A(F(p)RK/K, H, c).

We will show that A/K is the desired algebra, for some T, M. Assume not. Then
the proofs of 3.19 and 3.9 make it clear that the equivalent conditions of 3.19
hold for F(p(s)) D F(p) D F. Hence, if f : M,(H')— M.(H) is the natural map of
H' modules, then 7 (f) = [0]. This being false by 2.7, we are done. Q.E.D.

Considering that the whole question started with an approximation property
for global fields, it is worthwhile to state the approximation problem version of
4.19, which follows.

CoroLLARY 4.20. Suppose q, p are as above, and that F(p)/F is not cyclic. Let
A be a finite abelian group, with A D C,. Then there is a field K D F, a discrete
valuation v on K with completion K,, and a C, extension L/K,, such that
Ind¢,(L/K) does not pull back to K.

PrOOF (outline). Assume not. Then there is a relative approximation prop-
erty for €(C,) and €(C.), where s =2'q and this has the obvious meaning. This
immediately implies that if T, M is a discrete valuation F algebra, and K = T/M,
then for any C, extension L/K, some L - --@ L would lift to a C, extension
of T. By the remark after 3.9, this implies the lifting for all T, M; which
contradicts 4.19. Q.E.D.

§5. Lifting crossed products

Let G be a finite group, T, M a local F algebra, and $/T a G-Galois
extension. In this section we will look at the question of whether
Br(S/T)— Br((S/MS)/(T/M)) is surjective. Note how a specific question of this
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sort arose in §4, and how a partial answer was used to reach conclusions about
cyclic Galois extensions. Our arguments have two highlights. First, we show how
our question is related to older questions of whether algebras can be expressed
in terms of cyclic algebras. Second, let p be a prime and let Z(F,p, r) be the
center of the generic division algebra UD(F, p,r). Then Z(F,p,r)/F is retract
rational.

To begin with, we must consider the corestriction map. We will use this map
only in a limited context, so we will not give the most general definition. Suppose
R is the semilocal F algebra and T/R is a G-Galois extension. There is an
isomorphism jrx : H(G, T*)— Br(T/R) where j is defined via the crossed
product construction. Suppose H C G is a subgroup and S is the fixed ring of H
in T. S is again semilocal. Cohomologically, one can define a transfer map
Trom : H(H, T*)— H*(G, T*) (e.g. [4], p. 104). Using the isomorphisms jr/z
and jrs, we have the corestriction map Corgr : Br(T/S)— Br(T/R). Note that
the map we have defined is a special case of the construction in [15]. In
particular, we can conclude that Cors,x does not depend on G or T but only on
S/R.

From the basic properties of the transfer map (e.g. [4], p. 105), we conclude
that if [A]€Br(R), then Corsx (S @QrA)=[A]" where n =[G : H]. Also,
since the transfer map is a natural transformation, we conclude that if
¢ :R—R'is an F map of commutative F algebras, then

Br(T/S)—> Br(T'/S")
(5.1) le lcor

Br(T/R)—> Br(T'/R")

commutes, where T'=T®,R’' and $'=S Q. R’. Finally, if § DS’ D R then
Cors,;r = Corgr °Corgys:.

Turning to lifting questions, we have already seen that cyclic algebras behave
well. Using the corestriction, we observe in the next proposition that this
generalizes to groups with cyclic Sylow subgroups.

ProposITION 5.2. Let T, M be a local F algebra. Set K = T/M. Suppose S/ T is
a G-Galois extension and L =S ®rK. Assume A = A(L/K, G, ¢) has exponent
a power, p', of a prime p. Further, assume that G has a cyclic p-Sylow subgroup of
order p°. then there is an Azumaya algebra B = A(S/T, G, ¢') such that B Q- K =
A and B has exponent dividing p’.

PrOOF. Let P C G be a p-Sylow subgroup. Set m =[G : P] and choose m’
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such that m'm=1(p’). Let A'=A(L/K,G,d) be such that [A']=[A]".
Denote by L', S’ the fixed ring of P in L and S respectively. Note that we may
assume L'=S'/MS’. We set A, to be the centralizer of L' in A’. Since P is
cyclic, Ai=A(L/L',0,b) where o generates P and b €(L')*. Since S’ is
semilocal, there is a b’ € (S')* such that b' is a preimage of b. Set B, =
A(S/S', 0, b"). Since Corgz ([B:]) €EBr(S/T),

COI’s*;R ([31]) = [B] where B = A(SfT, G, d’).

Using (5.1), [B®:K]=Cor.x [A'QxL')=[A']" =[A]. But A, B have
equal degrees, so B ®rK = A. Finally, [B] is the image under the corestriction
of an Azumaya algebra class with a representative of degree p’, so [B] has order
dividing p*, Q.E.D.

Now, as an immediate corollary of 5.2 we can prove the following.

CoROLLARY 5.3. Let Z(F,p,r) be the center of the generic division algebra
UD(F, p,r) of degree p, a prime. Then Z(F,p,r)/F is retract rational.

ProOF. By 3.11, we must show that Azumaya algebras of degree p have the
lifting property. So let T, M be a local F algebra, set K = T/M, and let A/K be
a central simple algebra of degree p. If A =M, (K), clearly A lifts. So we may
assume A is a division algebra. Choose L'C A to be a maximal separable
subfield, so L'/K has degree p. Also choose L, D L'DK such that L,/K is
Galois with group G C S, = G'. Set L =1Ind¢(L/K). L splits A so [A]=[A"]
where A'=A(L/K, S,,c).

Extensions with group S, have the lifting property. This can be seen in many
ways, the most convenient is to note that if V is the standard degree p
permutation representation of F[S,] and F' is the fixed field of S, on F.(V),
then F'/F is rational. Thus we can apply 3.11.

Using this, we choose an S, Galois extension S/T such that § ®rK = L. By
5.2, there is a B’ = A(S/T, S;, ¢') such that B'®@rK == A’, and B’ has exponent
p. S, has a subgroup, H, such that [S, : H] = p. Let S’ be the fixed ring of H in S.
S’ splits B’ because, if r is the exponent of B'®Q+S’, then r divides (p —1)! the
degree of S§/S'. But r divides p so r = 1. Hence ([7], p. 64) [B'] = [B] where
S'C B is maximal commutative. In particular, B/T has degree p. Since
[BR®rK]=[A],BQRQrK=A. Q.E.D.

We will end this paper by presenting a converse for 5.2. We do this by looking
at concrete semilocal rings, and examining when algebras lift. So let K be a field,
and L/K a G-Galois extension. Assume P,,- - -, P,, C K[t] are maximal ideals
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and P =P, - P,. Set R to be the localization K[t]s, S to be L @« R, K- to be
K[t])/P,and L, = L @« K». Note that [A ] € Br(K(t)) is in the image of Br(R) if
and only if yo([A]=1 for all Q =P,. Also, R is Dedekind so we have the
following exact sequence ([13]):

0— Br(R)— Br(K (1) — ) x(G))— 0

where G; is the absolute Galois group of K[t}/P;. We will identify Br(R) with its
image in Br(K(t)).

PropOSITION 5.4. [A]EBr(Ls/Kp) is in the image of Br(S/R) if and only if
[A}=[B][Bi] - - [Ba] where:

(i) [B)] is in the image of Br(L/K).

(i) Each [B:] has the form Cor_x({A(L"/L',0,c)]) where HC G is a
subgroup, L' is the fixed ring of Hin L, and L" is the fixed ring of H' C H such that
H/H' is generated by o.

PROOF. Suppose [A] is the image of [A']E€Br(S/R). We will use the
comments and notation of (4.3). Since A’ is Azumaya over R, xyo(A") =1 for all
Q =P, -, P.. Let Q- ,Q, be the primes such that A’ has nontrivial
characters at Q.. Set f; to be the character of A’ at Q;, and set K; = K{t]/Q;. The
character f; defines an extension L;/K; which is cyclic. Since S splits A’,
L C L Q«K.

According to [9], p. 51, there is a cyclic algebra A’ = A(L; (t)/Ki(t), o, ¢) such
that yo (Corkuyxwy([AT]))=f if OQ=Q: and =1 otherwise. Note that from
the argument in [9], one can see that ¢ is in Ki[t], and is, in fact, a product
of the generators of the primes into which Q; splits in K;[t]. Set [Af] to be
COIK.«)/K(:)([A )}

Since xo ([A]) =1 for any Q = P;, [A:] can be considered to be in Br(R). We
also claim that A is split by S. Set Ki= K; N L. There is a cyclic extension L{/K;
such that LiC L and L« K;=L,. An exercise in cohomology shows that
Cork,ayxf[A ")) has the form [A(L(t)/K'(t), o, N(c))] where N is the norm of
K (t)/Ki(t). Since L;C L, L(¢) splits

[A 1] = Corguyk(Cork,ayxin{[A"))-

Since S C L(t) is Dedekind, Br(S)— Br(L(t)) is injective so S splits [Af]
considered as an element of Br(R).

Taken all together, [A"] =[A’][Ai]™" - -[A ] has trivial character at all
primes and so is in the image of Br(K). Now we go modulo P. The image of A" is
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the B of the proposition. The naturality of the corestriction shows that the image
of [Al] is Corkg.kmik, (AL Rk Kr /KR« Kp, 0, d)]) where d is the image of
N(c) under the natural map KXk R — KR« Kr. Note that d is a unit by our
description of ¢. If H = Gal(L}/K?) and H' = Gal(L/L3}), and if [ B;] is the image
of [A}]"", then [B;] satisfies 5.4(ii).

To prove the converse, note that an argument like that of 5.3 shows that the
[Bi]'s lift to Br(S/R) and, of course, [B] lifts because there is a map
Br(K)— Br(R). Q.E.D.

With this calculation in hand, we can now prove:

THEOREM 5.5. IfFis a field and L/F is G-Galois, then o (L /F) has the lifting
property if and only if every Sylow subgroup of G is cyclic.

PrROOF. Set M = M:(G), K=Q(L/F,M), and L,=L QK. If ¢ is the
“generic” cocycle of M, we form A = A(L//K, G, c¢). Our first claim is that A has
exponent n = [L : F]. But if not, there is a 0 # r € L[M]° such that if U is the
group (L[M](1/r))*/L*, then ¢, considered as a cocycle of U, has exponent
m < n. There is an exact sequence

0O->M->U—->P->0

where P is a permutation module. Since H'(G,P)=(0), the
map H*(G,M)— H*(G, U) is an injection. Hence, as a cocycle of M, ¢ has
exponent m. However, an exercise in cohomology shows that H*(G, M) = Z/nZ,
with the image of ¢ forming a generator. This contradiction proves the claim.
With A/K as given, choose P C K[t] such that K[t]/P =K@ K. Set R =
K[t]r. Let A'/(K @ K) be the algebra A G M. (K). If /(L /F) has the lifting
property, then we observed in §1 that &/(L/F) has the lifting property over
semilocal rings. Hence [A'] is in the image of Br((L ®-R)/R). By 5.4,

[Al=[A1]" - [An]

where each [A;] has the form Corx,«x ([A(L'/K’, a,¢)]), with L' C L ®-K and
with L'/K’ being cyclic. Clearly, we may assume that all the L'/K’ have prime
power degree. Let p In and suppose p’ is the highest power of p dividing n.
Since A has exponent n, some A; must have exponent p’, and the corresponding
L’/K’ then must have degree p’. In other words, there must be subgroups
H'<a H C G such that H/H' is cyclic of order p'. By elementary group theory, G
has a cyclic p Sylow subgroup. As the converse follows easily from 5.2, we are
done. Q.E.D.
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REMARK. The proof of 5.5 can be modified to yield a converse to one of the
basic observations of §4. Namely, suppose F, p = p(q), p’' = p(s) are as in 4.14. If
every A/K € 4 (F(p)/F) has the property that M,(A) (for the appropriate f)
lifts to an element of A(F(p')/F), then every such M,(A)€E A(F(p')/F)
decomposes.
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